Some inequalities of Hermite-Hadamard type for m-harmonic-arithmetically convex functions

被引:23
作者
Xi, Bo-Yan [1 ]
Qi, Feng [2 ]
Zhang, Tian-Yu [1 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
来源
SCIENCEASIA | 2015年 / 41卷 / 05期
关键词
m-HA-convex function; Hermite-Hadamard type inequality; (ALPHA; DERIVATIVES; M)-CONVEX;
D O I
10.2306/scienceasia1513-1874.2015.41.357
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce the notion of m-harmonic-arithmetically convex functions and establish some integral inequalities of Hermite-Hadamard type for these functions.
引用
收藏
页码:357 / 361
页数:5
相关论文
共 14 条
[1]  
[Anonymous], 2013, ANALYSIS-UK, DOI DOI 10.1524/ANLY.2013.1192
[2]  
[Anonymous], 2013, NONLINEAR FUNCTIONAL
[3]  
[Anonymous], 2013, Transylv. J. Math. Mech.
[4]  
[Anonymous], 1993, Stud. U. Babes-Bol. Mat.
[5]  
[Anonymous], 2002, TAMKANG J MATH
[6]  
[Anonymous], 2013, Adv. Inequal. Appl
[7]   Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions [J].
Bai, Rui-Fang ;
Qi, Feng ;
Xi, Bo-Yan .
FILOMAT, 2013, 27 (01) :1-7
[8]   Some Hermite-Hadamard type inequalities for functions whose n-th derivatives are (α, m)-convex [J].
Li, Wen-Hui ;
Qi, Feng .
FILOMAT, 2013, 27 (08) :1575-1582
[9]  
Noor M.A., 2013, Analysis (Munich), V33, P367, DOI 10.1524/anly.2013.1223
[10]  
Shuang Y, 2014, J COMPUT ANAL APPL, V17, P272