Group algebras whose symmetric elements are Lie metabelian

被引:6
作者
Catino, Francesco [1 ]
Lee, Gregory T. [2 ]
Spinelli, Ernesto [3 ]
机构
[1] Univ Salento, Dipartimento Matemat Fis & Ennio Giorgi, I-73100 Lecce, Italy
[2] Lakehead Univ, Dept Math Sci, Thunder Bay, ON P7B 5E1, Canada
[3] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
Group rings; Lie metabelian; involution; symmetric elements; GROUP-RINGS; NILPOTENCY; UNITS;
D O I
10.1515/forum-2012-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a field of characteristic p not equal 2 and G a group without 2- elements having an involution *. Write (FG)(+) for the set of elements in the group ring FG that are symmetric with respect to the induced involution. In the present note, we show that if G is finite and (FG)(+) is Lie metabelian, then G is nilpotent. Based on this result, we deduce that if G is torsion, p not equal 3 and (FG)(+) is Lie metabelian, then G must be abelian. This extends a result of Levin and Rosenberger.
引用
收藏
页码:1459 / 1471
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1996, COURSE THEORY GROUPS
[2]   Lie derived length and involutions in group algebras [J].
Balogh, Zsolt .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (06) :1282-1287
[3]   LIE NILPOTENCY OF GROUP-RINGS [J].
GIAMBRUNO, A ;
SEHGAL, SK .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (11) :4253-4261
[4]   Group algebras of torsion groups and Lie nilpotence [J].
Giambruno, A. ;
Milies, C. Polcino ;
Sehgal, Sudarshan K. .
JOURNAL OF GROUP THEORY, 2010, 13 (02) :221-231
[5]   Lie properties of symmetric elements in group rings [J].
Giambruno, A. ;
Milies, C. Polcino ;
Sehgal, Sudarshan K. .
JOURNAL OF ALGEBRA, 2009, 321 (03) :890-902
[6]  
Herstein I.N., 1976, Chicago Lectures in Mathematics
[7]   On symmetric elements and symmetric units in group rings [J].
Jespers, E ;
Marín, MR .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (02) :727-736
[8]  
Lee GT, 2010, ALGEBRA APPL, V12, P1, DOI 10.1007/978-1-84996-504-0
[9]   Lie properties of symmetric elements in group rings II [J].
Lee, Gregory T. ;
Sehgal, Sudarshan K. ;
Spinelli, Ernesto .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (06) :1173-1178
[10]   Group algebras whose symmetric and skew elements are Lie solvable [J].
Lee, Gregory T. ;
Sehgal, Sudarshan K. ;
Spinelli, Ernesto .
FORUM MATHEMATICUM, 2009, 21 (04) :661-671