Strength and ductility with {10(1)over-bar1} - {10(1)over-bar2} double twinning in a magnesium alloy

被引:229
作者
Lentz, M. [1 ]
Risse, M. [1 ]
Schaefer, N. [2 ]
Reimers, W. [1 ]
Beyerlein, I. J. [3 ]
机构
[1] Tech Univ Berlin, Inst Werkstoffwissensch & Technol, Met Werkstoffe, Ernst Reuter Pl 1, D-10587 Berlin, Germany
[2] Helmholtz Zentrum Berlin Mat & Energien GmbH, Inst Nanoarchitectures Energy Convers EE IN, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
X-RAY-DIFFRACTION; STRAIN-PATH CHANGES; GRAIN-SIZE; DEFORMATION-BEHAVIOR; HCP METALS; IN-SITU; POLYCRYSTALLINE MAGNESIUM; MECHANICAL-PROPERTIES; TEXTURE EVOLUTION; CONTRACTION TWINS;
D O I
10.1038/ncomms11068
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on their high specific strength and stiffness, magnesium alloys are attractive for lightweight applications in aerospace and transportation, where weight saving is crucial for the reduction of carbon dioxide emissions. Unfortunately, the ductility of magnesium alloys is usually limited. It is thought that one reason for the lack of ductility is that the development of {10 (1) over bar1}-{10 (1) over bar2} double twins (DTW) cause premature failure of magnesium alloys. Here we show with a magnesium alloy containing 4 wt% lithium, that the same impressively large compression failure strains can be achieved with DTWs as without. The DTWs form stably across the microstructure and continuously throughout straining, forming three-dimensional intra-granular networks, a potential strengthening mechanism. We rationalize that relatively easier <c+a> slip characteristic of this alloy plastically relaxed the localized stress concentrations that DTWs can generate. This result may provide key insight and an alternative perspective towards designing formable and strong magnesium alloys.
引用
收藏
页数:7
相关论文
共 52 条
[1]  
Abrmoff MD., 2004, Image Processing with ImageJ, V11, P36, DOI DOI 10.1201/9781420005615.AX4
[2]   Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y [J].
Agnew, SR ;
Yoo, MH ;
Tomé, CN .
ACTA MATERIALIA, 2001, 49 (20) :4277-4289
[3]  
Agnew SR, 2002, METALL MATER TRANS A, V33, P851, DOI 10.1007/s11661-002-1017-1
[4]   Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy [J].
Al-Samman, T. .
ACTA MATERIALIA, 2009, 57 (07) :2229-2242
[5]   The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys [J].
Ando, D. ;
Koike, J. ;
Sutou, Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 600 :145-152
[6]   Non-basal slips in magnesium and magnesium-lithium alloy single crystals [J].
Ando, S ;
Tonda, H .
MAGNESIUM ALLOYS 2000, 2000, 350-3 :43-48
[7]   Non-basal slip in magnesium-lithium alloy single crystals [J].
Ando, S ;
Tonda, H .
MATERIALS TRANSACTIONS JIM, 2000, 41 (09) :1188-1191
[8]   Texture Analysis with MTEX - Free and Open Source Software Toolbox [J].
Bachmann, F. ;
Hielscher, R. ;
Schaeben, H. .
TEXTURE AND ANISOTROPY OF POLYCRYSTALS III, 2010, 160 :63-+
[9]   Necking and failure at low strains in a coarse-grained wrought Mg alloy [J].
Barnett, M. R. ;
Jacob, S. ;
Gerard, B. F. ;
Mullins, J. G. .
SCRIPTA MATERIALIA, 2008, 59 (10) :1035-1038
[10]   A rationale for the strong dependence of mechanical twinning on grain size [J].
Barnett, M. R. .
SCRIPTA MATERIALIA, 2008, 59 (07) :696-698