Role of HIF-1α in skeletal development

被引:136
|
作者
Wan, Chao [1 ]
Shao, Jin [2 ]
Gilbert, Shawn R. [3 ]
Riddle, Ryan C. [1 ]
Long, Fanxin [4 ]
Johnson, Randall S. [5 ]
Schipani, Ernestina [6 ,7 ]
Clemens, Thomas L. [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Orthopaed Surg, Baltimore, MD 21205 USA
[2] Shanghai Jiao Tong Univ, Sch Med, Ruijin Hosp, Shanghai Inst Traumatol & Orthopaed, Shanghai 200030, Peoples R China
[3] Univ Alabama, Dept Surg, Birmingham, AL 35294 USA
[4] Washington Univ, Sch Med, Dept Med, Dept Dev Biol, St Louis, MO 63110 USA
[5] Univ Calif San Diego, Div Biol Sci, Mol Biol Sect, La Jolla, CA 92093 USA
[6] Harvard Univ, Sch Med, Boston, MA USA
[7] Massachusetts Gen Hosp, Endocrine Unit, Boston, MA 02114 USA
来源
SKELETAL BIOLOGY AND MEDICINE | 2010年 / 1192卷
关键词
knockout mice; osteoblasts; hypoxia-inducible factor; angiogenesis; HYPOXIA-INDUCIBLE FACTOR-1-ALPHA; ENDOCHONDRAL BONE-FORMATION; VASCULAR CONTRIBUTION; EPIPHYSIAL CARTILAGE; MULTIPLE ROLES; FACTOR-I; GROWTH; ANGIOGENESIS; PATHWAY; DIFFERENTIATION;
D O I
10.1111/j.1749-6632.2009.05238.x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Angiogenesis and osteogenesis are tightly coupled during bone development and regeneration. Mesenchymal cells in the developing stroma elicit angiogenic signals to recruit new blood vessels into bone. Reciprocal signals, likely emanating from the incoming vascular endothelium, stimulate mesenchymal cell specification through additional interactions with cells within the vascular stem cell niche. The hypoxia-inducible factor-1 alpha (HIF-1) pathway has been identified as a key component in this process. We demonstrated that overexpression of HIF-1 in mature osteoblasts through disruption of the von Hippel-Lindau protein profoundly increases angiogenesis and osteogenesis; these processes appear to be coupled by cell nonautonomous mechanisms involving the action of vascular endothelial growth factor (VEGF) on the endothelial cells. The same occurred in the model of injury-mediated bone regeneration (distraction osteogenesis). Surprisingly, manipulation of HIF-1 does not influence angiogenesis of the skull bones, where earlier activation of HIF-1 in the condensing mesenchyme upregulates osterix during cranial bone formation.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 50 条
  • [1] The role of HIF-1 in hypoxic response in the skeletal muscle
    Mason, Steven
    Johnson, Randall S.
    HYPOXIA AND THE CIRCULATION, 2007, 618 : 229 - 244
  • [2] Role of HIF-1 signalling in skeletal muscle after trauma.
    Dehne, N
    Nigge, E
    Fandrey, J
    SHOCK, 2005, 23 : 37 - 37
  • [3] The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration
    Mitroshina, Elena V.
    Vedunova, Maria V.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (09)
  • [4] The role of hypoxia and the transcription factor HIF-1 in the development of metastasis
    Whitney, LK
    Williams, KJ
    Stratford, IJ
    Lunt, SJ
    Brown, L
    BRITISH JOURNAL OF CANCER, 2004, 91 : S50 - S50
  • [5] Role of HIF-1α and HIF-2α in osteoarthritis
    Zhang, Fang-Jie
    Luo, Wei
    Lei, Guang-Hua
    JOINT BONE SPINE, 2015, 82 (03) : 144 - 147
  • [6] The Role of HIF-1α in Bone Homeostasis
    Kim, Su-Jin
    Huh, Yun Hyun
    Ryu, Je-Hwang
    JOURNAL OF BONE AND MINERAL RESEARCH, 2024, 39 : 140 - 140
  • [7] The role of HIF-1α in the pathogenesis of psoriasis
    Das Mahapatra, K.
    Jargosch, M.
    Hillig, C.
    Buchholz, B.
    Thomas, J.
    Eyerich, S.
    Eyerich, K.
    Garzorz-Stark, N.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (12) : S181 - S181
  • [8] HIF-1 as a target for drug development
    Amato Giaccia
    Bronwyn G. Siim
    Randall S. Johnson
    Nature Reviews Drug Discovery, 2003, 2 : 803 - 811
  • [9] HIF-1 as a target for drug development
    Giaccia, A
    Siim, BG
    Johnson, RS
    NATURE REVIEWS DRUG DISCOVERY, 2003, 2 (10) : 803 - 811
  • [10] Piecing together the HIF-1 puzzle - The role of the CTGF as a molecular mechanism of HIF-1 regulation
    Smith, Erika K.
    Price, Douglas K.
    Figg, William D.
    CANCER BIOLOGY & THERAPY, 2006, 5 (11) : 1443 - 1444