A mitral annulus tracking approach for navigation of off-pump beating heart mitral valve repair

被引:11
作者
Li, Feng P. [1 ]
Rajchl, Martin [1 ]
Moore, John [1 ]
Peters, Terry M. [1 ]
机构
[1] Univ Western Ontario, Robarts Res Inst, Imaging Lab, London, ON N6A 5B7, Canada
基金
加拿大健康研究院;
关键词
beating heart mitral valve repair; image guidance; ultrasound; mitral annulus tracking; real-time; TRANSESOPHAGEAL ECHOCARDIOGRAPHY; ULTRASOUND; GUIDANCE; SEGMENTATION; SURGERY; REGISTRATION; REGURGITATION; IMPLANTATION; FLUOROSCOPY; FUSION;
D O I
10.1118/1.4904022
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop and validate a real-time mitral valve annulus (MVA) tracking approach based on biplane transesophageal echocardiogram (TEE) data and magnetic tracking systems (MTS) to be used in minimally invasive off-pump beating heart mitral valve repair (MVR). Methods: The authors' guidance system consists of three major components: TEE, magnetic tracking system, and an image guidance software platform. TEE provides real-time intraoperative images to show the cardiac motion and intracardiac surgical tools. The magnetic tracking system tracks the TEE probe and the surgical tools. The software platform integrates the TEE image planes and the virtual model of the tools and the MVA model on the screen. The authors' MVA tracking approach, which aims to update the MVA model in near real-time, comprises of three steps: image based gating, predictive reinitialization, and registration based MVA tracking. The image based gating step uses a small patch centered at each MVA point in the TEE images to identify images at optimal cardiac phases for updating the position of the MVA. The predictive reinitialization step uses the position and orientation of the TEE probe provided by the magnetic tracking system to predict the position of the MVA points in the TEE images and uses them for the initialization of the registration component. The registration based MVA tracking step aims to locate the MVA points in the images selected by the image based gating component by performing image based registration. Results: The validation of the MVA tracking approach was performed in a phantom study and a retrospective study on porcine data. In the phantom study, controlled translations were applied to the phantom and the tracked MVA was compared to its "true" position estimated based on a magnetic sensor attached to the phantom. The MVA tracking accuracy was 1.29 +/- 0.58 mm when the translation distance is about 1 cm, and increased to 2.85 +/- 1.19 mm when the translation distance is about 3 cm. In the study on porcine data, the authors compared the tracked MVA to a manually segmented MVA. The overall accuracy is 2.37 +/- 1.67 mm for single plane images and 2.35 +/- 1.55 mm for biplane images. The interoperator variation in manual segmentation was 2.32 +/- 1.24 mm for single plane images and 1.73 +/- 1.18 mm for biplane images. The computational efficiency of the algorithm on a desktop computer with an Intel (R) Xeon (R) CPU @3.47 GHz and an NVIDIA GeForce 690 graphic card is such that the time required for registering four MVA points was about 60 ms. Conclusions: The authors developed a rapid MVA tracking algorithm for use in the guidance of off-pump beating heart transapical mitral valve repair. This approach uses 2D biplane TEE images and was tested on a dynamic heart phantom and interventional porcine image data. Results regarding the accuracy and efficiency of the authors' MVA tracking algorithm are promising, and fulfill the requirements for surgical navigation. (C) 2015 American Association of Physicists in Medicine.
引用
收藏
页码:456 / 468
页数:13
相关论文
共 50 条
  • [21] Is trans-apical off-pump neochord implantation a safe and effective procedure for mitral valve repair?
    Salihi, Salih
    Ozalp, Bilhan
    Sacli, Hakan
    Kara, Ibrahim
    Koksal, Cengiz
    ANATOLIAN JOURNAL OF CARDIOLOGY, 2019, 22 (06) : 319 - 324
  • [22] Off-pump transapical mitral valve-in-ring implantation
    Zou, Yu
    Ferrari, Enrico
    von Segesser, Ludwig K.
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2013, 43 (04) : 849 - 855
  • [23] Development of Off-Pump Mitral Valve Replacement in a Porcine Model
    Gillespie, Matthew J.
    Aoki, Chikashi
    Takebayashi, Satoshi
    Shimaoka, Toru
    McGarvey, Jeremy R.
    Gorman, Robert C.
    Gorman, Joseph H., III
    ANNALS OF THORACIC SURGERY, 2015, 99 (04) : 1408 - 1412
  • [24] Ultrasound Guidance for Beating Heart Mitral Valve Repair Augmented by Synthetic Dynamic CT
    Li, Feng P.
    Rajchl, Martin
    White, James A.
    Goela, Aashish
    Peters, Terry M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) : 2025 - 2035
  • [25] Transcatheter edge-to-edge mitral valve repair in patients with mitral annulus calcification
    Fernandez-Peregrina, Estefania
    Pascual, Isaac
    Freixa, Xavier
    Tirado-Conte, Gabriela
    Estevez-Loureiro, Rodrigo
    Carrasco-Chinchilla, Fernando
    Benito-Gonzalez, Tomas
    Asmarats, Lluis
    Sanchis, Laura
    Jimenez-Quevedo, Pilar
    Avanzas, Pablo
    Caneiro-Queija, Berenice
    Isabel Molina-Ramos, Ana
    Fernandez-Vazquez, Felipe
    Li, Chi-Hion
    Flores-Umanzor, Eduardo
    Sans-Rosello, Jordi
    Nombela-Franco, Luis
    Arzamendi, Dabit
    EUROINTERVENTION, 2022, 17 (16) : 1300 - 1309
  • [26] Prognostic impact of leaflet-to-annulus index in patients treated with transapical off-pump echo-guided mitral valve repair with NeoChord implantation
    Colli, Andrea
    Besola, Laura
    Montagner, Matteo
    Azzolina, Danila
    Soriani, Nicola
    Manzan, Erica
    Bizzotto, Eleonora
    Zucchetta, Fabio
    Bellu, Roberto
    Pittarello, Demetrio
    Gerosa, Gino
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2018, 257 : 235 - 237
  • [27] Outcomes of the RESTOR-MV Trial (Randomized Evaluation of a Surgical Treatment for Off-Pump Repair of the Mitral Valve)
    Grossi, Eugene A.
    Patel, Nirav
    Woo, Y. Joseph
    Goldberg, Judith D.
    Schwartz, Charles F.
    Subramanian, Valavanur
    Feldman, Ted
    Bourge, Robert
    Baumgartner, Norbert
    Genco, Christopher
    Goldman, Scott
    Zenati, Marco
    Wolfe, J. Alan
    Mishra, Yugal K.
    Trehan, Naresh
    Mittal, Sanjay
    Shang, Shulian
    Mortier, Todd J.
    Schweich, Cyril J., Jr.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2010, 56 (24) : 1984 - 1993
  • [28] Off-Pump NeoChord Mitral Valve Repair to Simultaneously Treat Posterior Leaflet Prolapse and Systolic Anterior Motion
    Salizzoni, Stefano
    Marro, Matteo
    Rovera, Chiara
    Speziali, Giovanni
    Rinaldi, Mauro
    ANNALS OF THORACIC SURGERY, 2017, 103 (01) : E29 - E30
  • [29] Intensive Care and Anesthesia Management for HARPOON Beating Heart Mitral Valve Repair
    Diprose, Paul
    Fogg, Katheryn J.
    Pittarello, Demetrio
    Gammie, James S.
    D'Ambra, Michael N.
    ANNALS OF CARDIAC ANAESTHESIA, 2020, 23 (03) : 321 - 326
  • [30] Acute intraoperative echocardiographic changes after transapical off-pump mitral valve repair with NeoChord implantation
    Colli, Andrea
    Besola, Laura
    Montagner, Matteo
    Soriani, Nicola
    Manzan, Erica
    Bizzotto, Eleonora
    Zucchetta, Fabio
    Azzolina, Danila
    Bellu, Roberto
    Sarais, Cristiano
    Pittarello, Demetrio
    Gerosa, Gino
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2018, 257 : 230 - 234