Numerical solution of stochastic fractional differential equations

被引:68
作者
Kamrani, Minoo [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
Stochastic fractional differential equations; Galerkin approximation; Convergence; VARIATIONAL ITERATION METHOD; HOMOTOPY ANALYSIS METHOD; APPROXIMATIONS; DERIVATIVES; NOISE;
D O I
10.1007/s11075-014-9839-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nowadays, fractional calculus is used to model various different phenomena in nature. The aim of this paper is to investigate the numerical solution of stochastic fractional differential equations (SFDEs) driven by additive noise. By applying Galerkin method that is based on orthogonal polynomials which here we have used Jacobi polynomials, we prove the convergence of the method. Numerical examples confirm the efficiency of the method.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 26 条
[1]  
Allen E.J., 1998, Stoch. Stoch. Rep., V64, P117, DOI [10.1080/17442509808834159, DOI 10.1080/17442509808834159]
[2]   On a system of differential equations with fractional derivatives arising in rod theory [J].
Atanackovic, TM ;
Stankovic, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (04) :1241-1250
[3]  
Badr A.A., MONTE CARLO GALERKIN, DOI [10.1155/2012/709106, DOI 10.1155/2012/709106]
[4]   Full discretization of the stochastic Burgers equation with correlated noise [J].
Bloemker, Dirk ;
Kamrani, Minoo ;
Hosseini, S. Mohammad .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) :825-848
[5]   GALERKIN APPROXIMATIONS FOR THE STOCHASTIC BURGERS EQUATION [J].
Bloemker, Dirk ;
Jentzen, Arnulf .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :694-715
[6]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[7]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[8]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[9]   A new Jacobi operational matrix: An application for solving fractional differential equations [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Ezz-Eldien, S. S. .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) :4931-4943
[10]   Time-domain finite element analysis of viscoelastic structures with fractional derivatives constitutive relations [J].
Enelund, M ;
Josefson, BL .
AIAA JOURNAL, 1997, 35 (10) :1630-1637