First Principles Study of the Ambipolarity in a Germanene Nanoribbon Tunneling Field Effect Transistor

被引:6
作者
Samipour, Azam [1 ]
Dideban, Daryoosh [1 ]
Heidari, Hadi [2 ]
机构
[1] Univ Kashan, Inst Nanosci & Nanotechnol, Kashan, Iran
[2] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
关键词
MAGNETIC-PROPERTIES; GRAPHENE; DRAIN; PERFORMANCE; SILICENE; UNDERLAP; GEOMETRY; IMPACT; WIDTH; TFET;
D O I
10.1149/2.0021912jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, the effects of hetero-dielectric gate material and gate-drain underlap on the ambipolar and ON-state current of a germanene nanoribbon (GeNR) tunneling field-effect transistors (TFETs) is examined. The simulations are performed using the combination of density functional theory (DFT) and non-equilibrium Green's function (NEGF) formalism. It was observed that using high-k dielectric gate material increases the ON-state current while the combination of hetero-dielectric gate material and gate-drain underlap suppresses the ambipolar current and improves the ON-state current. In addition, the effect of various hetero-junctions in the source region on the performance of GeNR-TFET was investigated. Due to the dependency between the width and energy bandgap in GeNR, utilizing a small bandgap in the source improves ON-state current and its ambipolar behavior. (c) 2019 The Electrochemical Society.
引用
收藏
页码:M111 / M117
页数:7
相关论文
共 44 条
[1]   Controlling Ambipolar Current in Tunneling FETs Using Overlapping Gate-on-Drain [J].
Abdi, Dawit B. ;
Kumar, M. Jagadesh .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2014, 2 (06) :187-190
[2]   Germanene: the germanium analogue of graphene [J].
Acun, A. ;
Zhang, L. ;
Bampoulis, P. ;
Farmanbar, M. ;
van Houselt, A. ;
Rudenko, A. N. ;
Lingenfelder, M. ;
Brocks, G. ;
Poelsema, B. ;
Katsnelson, M. I. ;
Zandvliet, H. J. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (44)
[3]   Electronic and magnetic properties of graphene, silicene and germanene with varying vacancy concentration [J].
Ali, Muhammad ;
Pi, Xiaodong ;
Liu, Yong ;
Yang, Deren .
AIP ADVANCES, 2017, 7 (04)
[4]   Germanene nanoribbon tunneling field effect transistor (GeNR-TFET) with a 10nm channel length: analog performance, doping and temperature effects [J].
Bayani, Amir Hossein ;
Dideban, Daryoosh ;
Vali, Mehran ;
Moezi, Negin .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (04)
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   Effects of vacancy defects on graphene nanoribbon field effect transistor [J].
Chang, Sheng ;
Zhang, Yajun ;
Huang, Qijun ;
Wang, Hao ;
Wang, Gaofeng .
MICRO & NANO LETTERS, 2013, 8 (11) :816-821
[7]   Non-equilibrium Green function simulations of graphene, silicene, and germanene nanoribbon field-effect transistors [J].
Clendennen, Casey ;
Mori, Nobuya ;
Tsuchiya, Hideaki .
JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2015, 2 (01) :171-177
[8]   Influence of contact doping on graphene nanoribbon heterojunction tunneling field effect transistors [J].
Da, Haixia ;
Lam, Kai-Tak ;
Samudra, Ganesh S. ;
Liang, Gengchiau ;
Chin, Sai-Kong .
SOLID-STATE ELECTRONICS, 2012, 77 :51-55
[9]   Tunneling and Occupancy Probabilities: How Do They Affect Tunnel-FET Behavior? [J].
De Michielis, Luca ;
Lattanzio, Livio ;
Moselund, Kirsten E. ;
Riel, Heike ;
Ionescu, Adrian M. .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (06) :726-728
[10]   Armchair Graphene Nanoribbon Resonant Tunneling Diodes Using Antidote and BN Doping [J].
Goharrizi, Arash Yazdanpanah ;
Zoghi, Milad ;
Saremi, Mehdi .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (09) :3761-3768