Nonexistence, existence and multiplicity of positive solutions to the p(x)-Laplacian nonlinear Neumann boundary value problem

被引:12
作者
Deng, Shao-Gao [1 ,2 ]
Wang, Qin [1 ]
机构
[1] SW Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
关键词
p(x)-Laplacian; Positive solution; Nonlinear Neumann boundary value problem; Sub-supersolution method; Variational principle; ELLIPTIC-EQUATIONS; VARIABLE EXPONENT; LOCAL MINIMIZERS; P-LAPLACIAN; REGULARITY; SPACES; SOBOLEV;
D O I
10.1016/j.na.2010.05.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonexistence, existence and multiplicity of positive solutions for the nonlinear Neumann boundary value problem involving the p(x)-Laplacian of the form {-Delta(p(x))u + lambda vertical bar u vertical bar(p(x)-2)u = f (x, u) in Omega vertical bar del vertical bar(p(x)-2)partial derivative u/partial derivative eta = g(x, u) on partial derivative Omega, where Omega is a bounded smooth domain in R-N, p is an element of C-1 ((Omega) over bar) and p(x) > 1 for x is an element of (Omega) over bar. Using the sub-supersolution method and the variational principles, under appropriate assumptions on f and g, we prove that there exists lambda(*) > 0 such that the problem has at least two positive solutions if lambda > lambda(*), has at least one positive solution if lambda = lambda(*) and has no positive solution if lambda < lambda(*).
引用
收藏
页码:2170 / 2183
页数:14
相关论文
共 48 条
[1]   Multiplicity of positive solutions for a class of quasilinear nonhomogeneous Neumann problems [J].
Abreu, EAM ;
do O, JM ;
Medeiros, ES .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1443-1471
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
Alves CO, 2006, PROG NONLINEAR DIFFE, V66, P17
[4]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[5]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[6]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[7]  
[Anonymous], 2012, Homogenization of differential operators and integral functionals
[8]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[9]   Existence results for the p-Laplacian with nonlinear boundary conditions [J].
Bonder, JF ;
Rossi, JD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (01) :195-223
[10]  
BONDER JF, 1999, J DIFFER EQUATIONS, P1