Adaptive Virtual Environments using Machine Learning and Artificial Intelligence

被引:0
作者
Mcmahan, Timothy [1 ]
Parsons, Thomas D. [1 ,2 ]
机构
[1] Univ North Texas, Coll Informat, Denton, TX 76203 USA
[2] Computat Neuropsychol & Simulat CNS Lab, Denton, TX USA
关键词
Adaptive; Virtual Environments; EEG; Simulations; Gaming; Learning; Training; Diagnose; Machine Learning; Artificial Intelligence; Real-Time Feedback; INDEXES; EEG;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Advances in off-the-shelf sensor technology have aided the collection of psychophysiological data in real-time. Utilizing these low-cost sensors, researchers can monitor a person's cognitive, behavioral, and affective states (in real-time) as they interact within virtual environments. Moreover, this psychophysiological data can be used to develop adaptive virtual environments. In this paper, we explore electroencephalography-based algorithms to optimize flow models. These algorithms use various combinations of brain wave channels to develop indices of task engagement (Beta / (Alpha + Theta)), arousal (BetaF3 + BetaF4) / (AlphaF3 + AlphaF4), and valence (AlphaF4 / BetaF4) - (AlphaF3 / BetaF3). Results support accurate determination of when a person has left a state of flow. Moreover, the reported results can be further modeled using machine learning (e.g., Support Vector Machine, Naive Bayes, and K-Nearest Neighbor) to develop training classifiers used in our adaptive virtual environments. We purpose a set of rules for the development of an adaptive virtual environment that can adjust environmental stimuli to keep the user in a state of flow.
引用
收藏
页码:141 / 145
页数:5
相关论文
共 17 条
  • [1] A User Study of Visualization Effectiveness Using EEG and Cognitive Load
    Anderson, E. W.
    Potter, K. C.
    Matzen, L. E.
    Shepherd, J. F.
    Preston, G. A.
    Silva, C. T.
    [J]. COMPUTER GRAPHICS FORUM, 2011, 30 (03) : 791 - 800
  • [2] Berka C, 2007, AVIAT SPACE ENVIR MD, V78, pB231
  • [3] Electroencephalogram and Physiological Signal Analysis for Assessing Flow in Games
    Berta, Riccardo
    Bellotti, Francesco
    De Gloria, Alessandro
    Pranantha, Danu
    Schatten, Carlotta
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2013, 5 (02) : 164 - 175
  • [4] Evaluation of an adaptive automation system using three EEG indices with a visual tracking task
    Freeman, FG
    Mikulka, PJ
    Prinzel, LJ
    Scerbo, MW
    [J]. BIOLOGICAL PSYCHOLOGY, 1999, 50 (01) : 61 - 76
  • [5] Jatupaiboon N, 2013, INT JOINT CONF COMP, P21
  • [6] Kamzanova A, 2011, EEG INDICES TIME ON
  • [7] The stress and workload of virtual reality training: the effects of presence, immersion and flow
    Lackey, S. J.
    Salcedo, J. N.
    Szalma, J. L.
    Hancock, P. A.
    [J]. ERGONOMICS, 2016, 59 (08) : 1060 - 1072
  • [8] McMahan T., 2015, P 10 INT C FDN DIG G
  • [9] Modality specific assessment of video game player's experience using the Emotiv
    McMahan, Timothy
    Parberry, Ian
    Parsons, Thomas D.
    [J]. ENTERTAINMENT COMPUTING, 2015, 7 : 1 - 6
  • [10] Nacke LE., 2010, SIMULAT GAMING