FASTER ALGORITHMS FOR ALL-PAIRS APPROXIMATE SHORTEST PATHS IN UNDIRECTED GRAPHS

被引:24
作者
Baswana, Surender [1 ,3 ]
Kavitha, Telikepalli [2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Comp Sci & Engn, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
[3] Max Plank Inst Comp Sci, Saarbrucken, Germany
关键词
shortest path; distance; approximate distance; oracle; randomization; DISTANCE ORACLES; UNWEIGHTED GRAPHS;
D O I
10.1137/080737174
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let G - (V, E) be a weighted undirected graph having nonnegative edge weights. An estimate (delta) over cap (u, v) of the actual distance d( u, v) between u, v is an element of V is said to be of stretch t if and only if delta(u, v) <= (delta) over cap (u, v) <= t . delta(u, v). Computing all-pairs small stretch distances efficiently ( both in terms of time and space) is a well-studied problem in graph algorithms. We present a simple, novel, and generic scheme for all-pairs approximate shortest paths. Using this scheme and some new ideas and tools, we design faster algorithms for all-pairs t-stretch distances for a whole range of stretch t, and we also answer an open question posed by Thorup and Zwick in their seminal paper [J. ACM, 52 (2005), pp. 1-24].
引用
收藏
页码:2865 / 2896
页数:32
相关论文
共 22 条
[1]   Fast estimation of diameter and shortest paths (without matrix multiplication) [J].
Aingworth, D ;
Chekuri, C ;
Indyk, P ;
Motwani, R .
SIAM JOURNAL ON COMPUTING, 1999, 28 (04) :1167-1181
[2]  
[Anonymous], 1990, Introduction to Algorithms
[3]   Approximate Distance Oracles for Unweighted Graphs in Expected O(n2) Time [J].
Baswana, Surender ;
Sen, Sandeep .
ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (04)
[4]  
Baswana S, 2008, LECT NOTES COMPUT SC, V5125, P609, DOI 10.1007/978-3-540-70575-8_50
[5]   A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs [J].
Baswana, Surender ;
Sen, Sandeep .
RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (04) :532-563
[6]   More Algorithms for All-Pairs Shortest Paths in Weighted Graphs [J].
Chan, Timothy M. .
STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, :590-598
[7]   All-pairs small-stretch paths [J].
Cohen, E ;
Zwick, U .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 38 (02) :335-353
[8]   MATRIX MULTIPLICATION VIA ARITHMETIC PROGRESSIONS [J].
COPPERSMITH, D ;
WINOGRAD, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :251-280
[9]   All-pairs almost shortest paths [J].
Dor, D ;
Halperin, S ;
Zwick, U .
SIAM JOURNAL ON COMPUTING, 2000, 29 (05) :1740-1759
[10]  
Erdos Paul, 1964, Extremal problems in graph theory, P29