The Linked Neighbour List (LNL) method for fast off-lattice Monte Carlo simulations of fluids

被引:3
作者
Mazzeo, M. D. [1 ]
Ricci, M. [2 ]
Zannoni, C. [2 ]
机构
[1] UCL, Ctr Computat Sci, London WC1H 0AJ, England
[2] Univ Bologna, Dipartimento Chim Fis & Inorgan, I-40136 Bologna, Italy
关键词
Monte Carlo; Gay-Berne; Neighbour list; Link-cell; Linked list; MOLECULAR-DYNAMICS SIMULATIONS; ALGORITHM; DECOMPOSITION; PARTICLES; POLYMERS;
D O I
10.1016/j.cpc.2009.11.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new algorithm, called linked neighbour list (LNL), useful to substantially speed up off-lattice Monte Carlo simulations of fluids by avoiding the computation of the molecular energy before every attempted move. We introduce a few variants of the LNL method targeted to minimise memory footprint or augment memory coherence and cache utilisation. Additionally, we present a few algorithms which drastically accelerate neighbour finding. We test our methods on the simulation of a dense off-lattice Gay-Berne fluid subjected to periodic boundary conditions observing a speedup factor of about 2.5 with respect to a well-coded implementation based on a conventional link-cell. We provide several implementation details of the different key data structures and algorithms used in this work. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:569 / 581
页数:13
相关论文
共 34 条
[1]  
Allen M. P., 2017, COMPUTER SIMULATION
[2]  
Altmann S. L., 2005, Rotations, Quaternions, and Double Groups
[3]   General purpose molecular dynamics simulations fully implemented on graphics processing units [J].
Anderson, Joshua A. ;
Lorenz, Chris D. ;
Travesset, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) :5342-5359
[4]  
Baschnagel J, 2000, ADV POLYM SCI, V152, P41
[5]   A GENERALIZED GAY-BERNE INTERMOLECULAR POTENTIAL FOR BIAXIAL PARTICLES [J].
BERARDI, R ;
FAVA, C ;
ZANNONI, C .
CHEMICAL PHYSICS LETTERS, 1995, 236 (4-5) :462-468
[6]  
BINDER K, 1984, APPL MONTE CARLO STA
[7]  
BOWERS KJ, P SC 08
[8]   Performance of the Cell processor for biomolecular simulations [J].
De Fabritiis, G. .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 176 (11-12) :660-664
[9]  
DONGARRA J, P OON SKI 94
[10]  
Frenkel D., 1996, UNDERSTANDING MOL SI, DOI DOI 10.1016/B978-0-12-267351-1.X5000-7