Abel transform;
total variation;
integral transforms;
ill-posed inverse problems;
stability;
TOTAL VARIATION REGULARIZATION;
TOTAL VARIATION MINIMIZATION;
LINE INTEGRALS;
RECONSTRUCTION;
REPRESENTATION;
TOMOGRAPHY;
D O I:
10.1088/1361-6420/aad1c7
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Reconstructing images from ill-posed inverse problems often utilizes total variation regularization in order to recover discontinuities in the data while also removing noise and other artifacts. Total variation regularization has been successful in recovering images for (noisy) Abel transformed data, where object boundaries and data support will lead to sharp edges in the reconstructed image. In this work, we analyze the behavior of BV solutions to the Abel inverse problem, deriving a priori estimates on the recovery. In particular, we provide L-2-stability bounds on BV solutions to the Abel inverse problem. These bounds yield error estimates on images reconstructed from a proposed total variation regularized minimization problem.
机构:
UMR CNRS 6629, Lab Math Jean Leray, 2 Rue Houssiniere BP 92208, F-44322 Nantes 03, FranceUMR CNRS 6629, Lab Math Jean Leray, 2 Rue Houssiniere BP 92208, F-44322 Nantes 03, France
机构:
Far Eastern Federal University, ul. Sukhanova 8, Vladivostok
Vladivostok State University of Economics and Service, ul. Gogolya 41, VladivostokFar Eastern Federal University, ul. Sukhanova 8, Vladivostok
Alekseev G.V.
Lobanov A.V.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Applied Mathematics, ul. Radio 7, VladivostokFar Eastern Federal University, ul. Sukhanova 8, Vladivostok
机构:
Berufsakademie Nordhessen, University of Cooperative Education, 34537 Bad WildungenBerufsakademie Nordhessen, University of Cooperative Education, 34537 Bad Wildungen
Müller F.
Varnhorn W.
论文数: 0引用数: 0
h-index: 0
机构:
Universität Kassel, 34132 KasselBerufsakademie Nordhessen, University of Cooperative Education, 34537 Bad Wildungen