Model and Measurements of an Optical Stack for Broadband Visible to Near-Infrared Absorption in TiN MKIDs

被引:5
作者
Kouwenhoven, K. [1 ,2 ]
Elwakil, I [1 ]
van Wingerden, J. [3 ]
Murugesan, V [1 ]
Thoen, D. J. [2 ,4 ]
Baselmans, J. J. A. [1 ,2 ]
de Visser, P. J. [1 ]
机构
[1] SRON Netherlands Inst Space Res, Niels Bohrweg 4, NL-2333 CA Leiden, Netherlands
[2] Delft Univ Technol, Dept Microelect, Mekelweg 4, NL-2628 CD Delft, Netherlands
[3] Delft Univ Technol, Else Kooi Lab, Feldmannweg 17, NL-2628 CT Delft, Netherlands
[4] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会;
关键词
Microwave kinetic inductance detectors; TiN; Optical stack; Broadband absorption; CONSTANTS; FILMS;
D O I
10.1007/s10909-022-02774-0
中图分类号
O59 [应用物理学];
学科分类号
摘要
Typical materials for optical Microwave Kinetic Inductance Detetectors (MKIDs) are metals with a natural absorption of similar to 30-50% in the visible and near-infrared. To reach high absorption efficiencies (90-100%) the KID must be embedded in an optical stack. We show an optical stack design for a 60 nm TiN film. The optical stack is modeled as sections of transmission lines, where the parameters for each section are related to the optical properties of each layer. We derive the complex permittivity of the TiN film from a spectral ellipsometry measurement. The designed optical stack is optimised for broadband absorption and consists of, from top (illumination side) to bottom: 85 nm SiO2, 60 nm TiN, 23 nm of SiO2, and a 100 nm thick Al mirror. We show the modeled absorption and reflection of this stack, which has >80% absorption from 400 to 1550 nm and near-unity absorption for 500-800 nm. We measure transmission and reflection of this stack with a commercial spectrophotometer. The results are in good agreement with the model.
引用
收藏
页码:1249 / 1257
页数:9
相关论文
共 11 条
[1]   Characterization of sputtered hafnium thin films for high quality factor microwave kinetic inductance detectors [J].
Coiffard, G. ;
Daal, M. ;
Zobrist, N. ;
Swimmer, N. ;
Steiger, S. ;
Bumble, B. ;
Mazin, B. A. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (07)
[2]   Measurement of Optical Constants of TiN and TiN/Ti/TiN Multilayer Films for Microwave Kinetic Inductance Photon-Number-Resolving Detectors [J].
Dai, M. ;
Guo, W. ;
Liu, X. ;
Zhang, M. ;
Wang, Y. ;
Wei, L. F. ;
Hilton, G. C. ;
Hubmayr, J. ;
Ullom, J. ;
Gao, J. ;
Vissers, M. R. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2019, 194 (5-6) :361-369
[4]  
Lita AE, 2008, OPT EXPRESS, V16, P3032, DOI 10.1364/OE.16.003032
[5]  
Mazin B.A., 2020, ARXIV PREPRINT ARXIV
[6]   Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films [J].
Patsalas, P ;
Logothetidis, S .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (09) :4725-4734
[7]  
Pozar D. M., 2011, Microwave Engineering, V4th
[8]   ALGORITHM FOR THE DETERMINATION OF INTRINSIC OPTICAL-CONSTANTS OF METAL-FILMS - APPLICATION TO ALUMINUM [J].
RAKIC, AD .
APPLIED OPTICS, 1995, 34 (22) :4755-4767
[9]   Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm [J].
Reddy, Dileep, V ;
Nerem, Robert R. ;
Nam, Sae Woo ;
Mirin, Richard P. ;
Verma, Varun B. .
OPTICA, 2020, 7 (12) :1649-1653
[10]   Self-consistent optical constants of SiO2 and Ta2O5 films [J].
Rodriguez-de Marcos, Luis V. ;
Larruquert, Juan I. ;
Mendez, Jose A. ;
Aznarez, Jose A. .
OPTICAL MATERIALS EXPRESS, 2016, 6 (11) :3622-3637