New Monte Carlo algorithms for investigation of criticality fluctuations in the particle scattering process with multiplication in stochastic media

被引:1
作者
Ambos, Andrey Yu. [1 ]
Lotova, Galiya [1 ,2 ]
Mikhailov, Guennady [1 ,2 ]
机构
[1] RAS, Inst Computat Math & Math Geophys, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Statistical modelling; Monte Carlo method; effective multiplication factor; probability distribution; radiative transfer; PARAMETERS; TRANSPORT;
D O I
10.1515/rnam-2017-0014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Monte Carlo algorithm admitting parallelization is constructed for estimation of probability moments of the spectral radius of the operator of the integral equation describing transfer of particles with multiplication in a random medium. A randomized homogenization method is developed with the same aim on the base of the theory of small perturbations and diffusive approximation. Test calculations performed for a one-group spherically symmetric model system have shown a satisfactory concordance of results obtained from two models.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 15 条
[1]   Estimation of the Criticality Parameters of Branching Processes by the Monte Carlo Method [J].
Brednikhin, S. A. ;
Medvedev, I. N. ;
Mikhailov, G. A. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (02) :345-356
[2]  
Davison B., 1957, NEUTRON TRANSPORT TH
[3]  
Ermakov S. M., 1982, STAT MODELLING
[4]  
Ershov Yu. I., 1985, MATH FUNDAMENTALS TR, V1
[5]  
Kantorovich L. V., 1982, FUNCTIONAL ANAL, VXIV
[6]   Moments of the Critical Parameters of the Transport of Particles in a Random Medium [J].
Lotova, G. Z. ;
Mikhailov, G. A. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (12) :2254-2265
[7]   Estimates of the fluctuations of criticality parameters in the particle transport process in a random medium [J].
Lotova, GZ ;
Mikhailov, GA .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2004, 19 (02) :173-183
[8]  
Marchuk G. I., 1961, METHODS CALCULATING
[9]  
MARCHUK GI, 1980, MONTE CARLO METHOD A
[10]  
Mikhailov G. A., 1977, COMP MATH MATH PHYS, V17, P244