Epigenetic modifications of RASSF1A gene through chromatin remodeling in prostate cancer (Publication with Expression of Concern)

被引:50
作者
Kawamoto, Ken
Okino, Steven T.
Place, Robert F.
Urakami, Shinji
Hirata, Hiroshi
Kikuno, Nobuyuki
Kawakami, Toshifumi
Tanaka, Yuichiro
Pookot, Deepa
Chen, Zhong
Majid, Shahana
Enokida, Hideki
Nakagawa, Masayuki
Dahiya, Rajvir
机构
[1] Vet Adm Med Ctr, Dept Urol, San Francisco, CA 94121 USA
[2] Univ Calif San Francisco, Sch Med, San Francisco, CA 94121 USA
[3] Shimane Univ, Dept Urol, Fac Med, Izumo, Shimane 6938501, Japan
[4] Kagoshima Univ, Dept Urol, Grad Sch Med & Dent Sci, Kagoshima 8908520, Japan
关键词
D O I
10.1158/1078-0432.CCR-06-2225
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: The RAS-association domain family 1, isoform A (RASSF1A) gene is shown to be inactivated in prostate cancers. However, the molecular mechanism of silencing of the RASSFIA gene is not fully understood. The present study was designed to investigate the mechanisms of inactivation of the RASSF1A gene through the analysis of CpG methylation and histone acetylation and H3 methylation associated with the RASSF1A promoter region. Experimental Design: Methylation status of the RASSF1A gene was analyzed in 131 samples of prostate cancer, 65 samples of benign prostate hypertrophy (BPH), and human prostate cell lines using methylation-specific PCR. Histone acetylation (acetyl-H3, acetyl-H4) and H3 methylation (dimethyl-H3-K4, dimethyl-H3-K9) status associated with the promoter region in prostate cells were analyzed by chromatin immunoprecipitation (ChIP) assay. Results: Aberrant methylation was detected in 97 (74.0%) prostate cancer samples and 12 (18.5%) BPH samples. The methylation frequency of RASSF1A showed a significant increase with high Gleason sum and high stage. The ChIP assays showed enhancement of histone acetylation and dimethyl-H3-K4 methylation on the unmethylated RASSF1A promoter. TSA alone was unable to alter key components of the histone code. However, after 5-aza-2'-deoxy-cytidine treatment, there was a complete reversal of the histone components in the hypermethylated promoter. Levels of acetyl-H3, acetyl-H4, and dimethyl-H3-K4 became more enriched, whereas H3K9me2 levels were severely depleted. Conclusions: This is the first report suggesting that reduced histone acetylation or H3K4me2 methylation and increased dimethyl-H3-K9 methylation play a critical role in the maintenance of promoter DNA methylation -associated RASSF1A gene silencing in prostate cancer.
引用
收藏
页码:2541 / 2548
页数:8
相关论文
共 38 条
[1]   Role of the ras-association domain family 1 tumor suppressor gene in human cancers [J].
Agathanggelou, A ;
Cooper, WN ;
Latif, F .
CANCER RESEARCH, 2005, 65 (09) :3497-3508
[2]   Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours [J].
Agathanggelou, A ;
Honorio, S ;
Macartney, DP ;
Martinez, A ;
Dallol, A ;
Radar, J ;
Fullwood, P ;
Chauhan, A ;
Walker, R ;
Shaw, JA ;
Hosoe, S ;
Lerman, MI ;
Minna, JD ;
Maher, ER ;
Latif, F .
ONCOGENE, 2001, 20 (12) :1509-1518
[3]  
[Anonymous], GEN RUL CLIN PATH ST
[4]   Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci [J].
Bastian, PJ ;
Ellinger, J ;
Wellmann, A ;
Wernert, N ;
Heukamp, LC ;
Müller, SC ;
von Ruecker, A .
CLINICAL CANCER RESEARCH, 2005, 11 (11) :4097-4106
[5]   DNA hypermethylation in tumorigenesis - epigenetics joins genetics [J].
Baylin, SB ;
Herman, JG .
TRENDS IN GENETICS, 2000, 16 (04) :168-174
[6]   Epigenetic inactivation of RASSF14 in lung and breast cancers and malignant phenotype suppression [J].
Burbee, DG ;
Forgacs, E ;
Zöchbauer-Müller, S ;
Shivakumar, L ;
Fong, K ;
Gao, BN ;
Randle, D ;
Kondo, M ;
Virmani, A ;
Bader, S ;
Sekido, Y ;
Latif, F ;
Milchgrub, S ;
Toyooka, S ;
Gazdar, AF ;
Lerman, MI ;
Zabarovsky, E ;
White, M ;
Minna, JD .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2001, 93 (09) :691-699
[7]   Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer [J].
Cameron, EE ;
Bachman, KE ;
Myöhänen, S ;
Herman, JG ;
Baylin, SB .
NATURE GENETICS, 1999, 21 (01) :103-107
[8]  
Dahiya R, 1997, INT J CANCER, V72, P762, DOI 10.1002/(SICI)1097-0215(19970904)72:5<762::AID-IJC10>3.0.CO
[9]  
2-B
[10]   Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3 [J].
Dammann, R ;
Li, C ;
Yoon, JH ;
Chin, PL ;
Bates, S ;
Pfeifer, GP .
NATURE GENETICS, 2000, 25 (03) :315-319