Detecting the Berry curvature in photonic graphene

被引:0
作者
Heinisch, R. L. [1 ]
Fehske, H. [1 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2017年 / 65卷 / 6-8期
关键词
Photonic lattices; wave-packet dynamics; Berry curvature; ELECTRONIC-PROPERTIES; PHASE; BANDS;
D O I
10.1002/prop.201600021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a method for measuring the Berry curvature from the wave-packet dynamics in perturbed arrays of evanescently coupled optical waveguides with honeycomb lattice structure. To disentangle the effects of the Berry curvature and the energy dispersion we utilize a difference measurement by propagating the wave packet under the influence of a constant external force back and forth. In this way a non-vanishing Berry curvature is obtained for photonic graphene with small sublattice bias or strain, where the relative error between the exact Berry curvature and the one derived from the semiclassical dynamics is negligible. For the strained lattice we demonstrate the robustness of the Berry curvature texture over the Brillouin zone compared to the energy dispersion. We also comment on the experimental realization of the proposed Berry curvature mapping in photonics.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Adiabatic dynamics of edge waves in photonic graphene [J].
Ablowitz, Mark J. ;
Curtis, Christopher W. ;
Ma, Yi-Ping .
2D MATERIALS, 2015, 2 (02)
[2]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[3]   Topological Transition of Dirac Points in a Microwave Experiment [J].
Bellec, Matthieu ;
Kuhl, Ulrich ;
Montambaux, Gilles ;
Mortessagne, Fabrice .
PHYSICAL REVIEW LETTERS, 2013, 110 (03)
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands [J].
Chang, MC ;
Niu, Q .
PHYSICAL REVIEW B, 1996, 53 (11) :7010-7023
[7]   Berry curvature effects in the Bloch oscillations of a quantum particle under a strong (synthetic) magnetic field [J].
Cominotti, Marco ;
Carusotto, Iacopo .
EPL, 2013, 103 (01)
[8]  
DIENER RB, 2003, ARXIVCONDMAT0306184, P90405
[9]   An Aharonov-Bohm interferometer for determining Bloch band topology [J].
Duca, L. ;
Li, T. ;
Reitter, M. ;
Bloch, I. ;
Schleier-Smith, M. ;
Schneider, U. .
SCIENCE, 2015, 347 (6219) :288-292
[10]  
Flaschner N, 2015, ARXIV150905763