Nonuniform ordinary dichotomy for evolution families on the real line

被引:0
作者
Morariu, Claudia [1 ]
Preda, Petre [1 ]
机构
[1] West Univ Timisoara, Fac Math & Comp Sci, Dept Math, Timisoara 300223, Romania
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2014年 / 57卷 / 04期
关键词
Evolution family; admissibility; dichotomy on R; EXPONENTIAL DICHOTOMY; EQUATIONS; STABILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents some Perron-type results for the nonuniform ordinary dichotomy of evolution families on the real line with nonuniform exponential growth. It it also mentioned the notion of the admissibility of the pair (L-1(X),L-infinity(X)) to an evolution family. This notion is used to obtain a result for the nonuniform ordinary dichotomy for an evolution family on the real line.
引用
收藏
页码:415 / 425
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2009, J DIFFER EQUATIONS, DOI DOI 10.1016/J.JDE.2008.10.010
[2]   NONUNIFORM EXPONENTIAL DICHOTOMIES AND ADMISSIBILITY [J].
Barreira, Luis ;
Valls, Claudia .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (01) :39-53
[3]   Admissibility for nonuniform exponential contractions [J].
Barreira, Luis ;
Valls, Claudia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (11) :2889-2904
[4]  
Ben-Artzi A., 1993, J. Dyn. Differ. Equ., V5, P1, DOI [10.1007/BF01063733, DOI 10.1007/BF01063733]
[5]  
Daleckij J., 1974, AM MATH SOC
[6]   Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces [J].
Latushkin Y. ;
Randolph T. ;
Schnaubelt R. .
Journal of Dynamics and Differential Equations, 1998, 10 (3) :489-510
[7]  
Levitan BM., 1982, Almost periodic functions and differential equations
[8]  
Massera J., 1966, Linear differential equations and function spaces
[9]  
Pazy A., 2012, Semigroups of Linear Operators and Applications to Partial Differential Equations, DOI DOI 10.1007/978-1-4612-5561-1
[10]   The stability question of differential equations. [J].
Perron, O .
MATHEMATISCHE ZEITSCHRIFT, 1930, 32 :703-728