A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation

被引:143
作者
Ruan, Qiushi [1 ]
Luo, Wenjun [1 ,3 ,4 ]
Xie, Jijia [1 ]
Wang, Yiou [1 ]
Liu, Xu [1 ]
Bai, Zhiming [5 ]
Carmalt, Claire J. [2 ]
Tang, Junwang [1 ]
机构
[1] UCL, Dept Chem Engn, Solar Energy & Adv Mat Res Grp, Torrington Pl, London WC1E 7JE, England
[2] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[3] Nanjing Tech Univ NanjingTech, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect KLOFE, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China
[4] Nanjing Tech Univ NanjingTech, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Inst Adv Mat, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China
[5] Beihang Univ, Sch Mat Sci & Engn, 37 Xueyuan Rd, Beijing, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
carbon nitride; nanojunctions; photoanodes; water splitting; GRAPHITIC CARBON NITRIDE; VISIBLE-LIGHT PHOTOCATALYSIS; DRIVEN OXYGEN EVOLUTION; ISOTYPE HETEROJUNCTION; HYDROGEN EVOLUTION; WATER; G-C3N4; PHOTOANODES; CATALYSTS; FILMS;
D O I
10.1002/anie.201703372
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ametal-free photoanode nanojunction architecture, composed of B-doped carbon nitride nanolayer and bulk carbon nitride, was fabricated by a one-step approach. This type of nanojunction (s-BCN) overcomes a few intrinsic drawbacks of carbon nitride film (severe bulk charge recombination and slow charge transfer). The top layer of the nanojunction has a depth of ca. 100 nm and the bottom layer is ca. 900 nm. The nanojunction photoanode results into a 10-fold higher photocurrent than bulk graphitic carbon nitride (G-CN) photoanode, with a record photocurrent density of 103.2 mu A cm(-2) at 1.23 V vs. RHE under one sun irradiation and an extremely high incident photon-to-current efficiency (IPCE) of ca. 10% at 400 nm. Electrochemical impedance spectroscopy, Mott-Schottky plots, and intensity-modulated photocurrent spectroscopy show that such enhancement is mainly due to the mitigated deep trap states, a more than 10 times faster charge transfer rate and nearly three times higher conductivity due to the nanojunction architecture.
引用
收藏
页码:8221 / 8225
页数:5
相关论文
共 52 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   Efficiency Enhancement of Carbon Nitride Photoelectrochemical Cells via Tailored Monomers Design [J].
Bian, Juncao ;
Xi, Lifei ;
Huang, Chao ;
Lange, Kathrin M. ;
Zhang, Rui-Qin ;
Shalom, Menny .
ADVANCED ENERGY MATERIALS, 2016, 6 (12)
[3]   Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications [J].
Bian, Juncao ;
Li, Qian ;
Huang, Chao ;
Li, Jianfu ;
Guo, Yao ;
Zaw, Myowin ;
Zhang, Rui-Qin .
NANO ENERGY, 2015, 15 :353-361
[4]   Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2 [J].
Chang, Sue-min ;
Liu, Wei-szu .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 101 (3-4) :333-342
[5]  
Choi W., 1994, ANGEW CHEM, V106, P1148, DOI DOI 10.1002/ANGE.19941061014
[6]   EFFECTS OF METAL-ION DOPANTS ON THE PHOTOCATALYTIC REACTIVITY OF QUANTUM-SIZED TIO2 PARTICLES [J].
CHOI, WY ;
TERMIN, A ;
HOFFMANN, MR .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1994, 33 (10) :1091-1092
[7]   Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes [J].
Cummings, Charles Y. ;
Marken, Frank ;
Peter, Laurence M. ;
Tahir, Asif A. ;
Wijayantha, K. G. Upul .
CHEMICAL COMMUNICATIONS, 2012, 48 (14) :2027-2029
[8]   Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4 [J].
Dong, Guohui ;
Zhao, Kun ;
Zhang, Lizhi .
CHEMICAL COMMUNICATIONS, 2012, 48 (49) :6178-6180
[9]   Time-Resolved Spectroscopic Investigation of Charge Trapping in Carbon Nitrides Photocatalysts for Hydrogen Generation [J].
Godin, Robert ;
Wang, Yiou ;
Zwijnenburg, Martijn A. ;
Tang, Junwang ;
Durrant, James R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (14) :5216-5224
[10]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344