An Inner Model Proof of the Strong Partition Property for δ12

被引:0
作者
Sargsyan, Grigor [1 ]
机构
[1] Rutgers State Univ, Dept Math, Hill Ctr Math Sci, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
mouse; inner model theory; descriptive set theory; hod mouse;
D O I
10.1215/00294527-2798745
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming V = L(R)+AD, using methods from inner model theory, we give a new proof of the strong partition property for (delta) under tilde (2)(1). The result was originally proved by Kechris et al.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 11 条
[1]  
[Anonymous], CABAL SEMIN IN PRESS
[2]   A boundedness lemma for iterations [J].
Hjorth, G .
JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (03) :1058-1072
[3]  
Jackson S., 2010, Handbook of set theory, V2, P1753, DOI 10.1007/978-1-4020-5764-9
[4]  
Kechris AlexanderS., 1981, CABAL SEMINAR 77 79, P75, DOI DOI 10.1007/BFB0090236
[5]   ON THE PREWELLORDERINGS ASSOCIATED WITH THE DIRECTED SYSTEMS OF MICE [J].
Sargsyan, Grigor .
JOURNAL OF SYMBOLIC LOGIC, 2013, 78 (03) :735-763
[6]  
Schindler R., CORE MODEL INDUCTION
[7]  
Steel John, 2010, Handbook of Set Theory, P1595
[8]  
[No title captured]
[9]  
[No title captured]
[10]  
[No title captured]