A further remark on the alternative expectation formula

被引:5
作者
Song, Pingfan [1 ]
Wang, Shaochen [2 ]
机构
[1] Hefei Univ Technol, Sch Econ, Hefei, Anhui, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Expectation; Fubini's theorem; non negative random variable; survival function; COVARIANCE;
D O I
10.1080/03610926.2019.1672743
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note, we give a further remark on the alternative expectation formula. We show that the survival function P (X > x)THORN involved in the integral tail expectation formula can be replaced by P(X >=-x) which differs from the formula in the discrete case.
引用
收藏
页码:2586 / 2591
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 1940, Schr Math Inst Univ Berlin
[2]   Higher-Order Moments Using the Survival Function: The Alternative Expectation Formula [J].
Chakraborti, Subhabrata ;
Jardim, Felipe ;
Epprecht, Eugenio .
AMERICAN STATISTICIAN, 2019, 73 (02) :191-194
[3]   On the covariance between functions [J].
Cuadras, CM .
JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 81 (01) :19-27
[4]   Another Remark on the Alternative Expectation Formula [J].
Hong, Liang .
AMERICAN STATISTICIAN, 2015, 69 (03) :157-159
[5]   A Remark on the Alternative Expectation Formula [J].
Hong, Liang .
AMERICAN STATISTICIAN, 2012, 66 (04) :232-233
[6]   Expectation formulas for integer valued multivariate random variables [J].
Kwong, Hok Shing ;
Nadarajah, Saralees .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (22) :5514-5518
[7]   Demystifying the Integrated Tail Probability Expectation Formula [J].
Lo, Ambrose .
AMERICAN STATISTICIAN, 2019, 73 (04) :367-374
[8]   Functional generalizations of Hoeffding's covariance lemma and a formula for Kendall's tau [J].
Lo, Ambrose .
STATISTICS & PROBABILITY LETTERS, 2017, 122 :218-226
[9]  
Mardia K. V., 1972, SANKHYA A, V34, P121
[10]  
MARDIA KV, 1967, BIOMETRIKA, V54, P235, DOI 10.2307/2333867