Formation of a Copper(II)-Tyrosyl Complex at the Active Site of Lytic Polysaccharide Monooxygenases Following Oxidation by H2O2

被引:72
|
作者
Paradisi, Alessandro [1 ]
Johnston, Esther M. [1 ]
Tovborg, Morten [4 ]
Nicoll, Callum R. [1 ]
Ciano, Luisa [1 ]
Dowle, Adam [2 ]
McMaster, Jonathan [5 ]
Hancock, Y. [3 ,6 ]
Davies, Gideon J. [1 ]
Walton, Paul H. [1 ]
机构
[1] Univ York, Dept Chem, York Y010 5DD, N Yorkshire, England
[2] Univ York, Ctr Excellence Mass Spectrometry, Technol Facil, York Y010 5DD, N Yorkshire, England
[3] Univ York, Dept Phys, York Y010 5DD, N Yorkshire, England
[4] Novozymes AS, Krogshoejvej 36, DK-2880 Bagsvaerd, Denmark
[5] Univ Nottingham, Sch Chem, Univ Pk, Nottingham NG7 2RD, England
[6] Univ York, York Cross Disciplinary Ctr Syst Anal, York YO10 SGE, N Yorkshire, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
RAY-ABSORPTION-SPECTROSCOPY; GALACTOSE-OXIDASE; K-EDGE; H2O2-DRIVEN DEGRADATION; ELECTRON-TRANSFER; BASIS-SETS; COPPER; METAL; ACTIVATION; PROTEINS;
D O I
10.1021/jacs.9b09833
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen peroxide is a cosubstrate for the oxidative cleavage of saccharidic substrates by copper-containing lytic polysaccharide monooxygenases (LPMOs). The rate of reaction of LPMOs with hydrogen peroxide is high, but it is accompanied by rapid inactivation of the enzymes, presumably through protein oxidation. Herein, we use UV-vis, CD, XAS, EPR, VT/VH-MCD, and resonance Raman spectroscopies, augmented with mass spectrometry and DFT calculations, to show that the product of reaction of an AA9 LPMO with H2O2 at higher pHs is a singlet Cu(II)-tyrosyl radical species, which is inactive for the oxidation of saccharidic substrates. The Cu(II)-tyrosyl radical center entails the formation of significant Cu(II)-((center dot)OTyr) overlap, which in turn requires that the plane of the d(x(2)-y(2)) SOMO of the Cu(II) is orientated toward the tyrosyl radical. We propose from the Marcus cross-relation that the active site tyrosine is part of a "hole-hopping" charge-transfer mechanism formed of a pathway of conserved tyrosine and tryptophan residues, which can protect the protein active site from inactivation during uncoupled turnover.
引用
收藏
页码:18585 / 18599
页数:15
相关论文
共 50 条
  • [1] Activation of O2 and H2O2 by Lytic Polysaccharide Monooxygenases
    Wang, Binju
    Wang, Zhanfeng
    Davies, Gideon J.
    Walton, Paul H.
    Rovira, Carme
    ACS CATALYSIS, 2020, 10 (21) : 12760 - 12769
  • [2] H2O2 in Liquid Fractions of Hydrothermally Pretreated Biomasses: Implications of Lytic Polysaccharide Monooxygenases
    Kont, Riin
    Pihlajaniemi, Ville
    Niemela, Klaus
    Kuusk, Silja
    Marjamaa, Kaisa
    Valjamae, Priit
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (48) : 16220 - 16231
  • [3] Theoretical study of the in situ formation of H2O2 by lytic polysaccharide monooxygenases: the reaction mechanism depends on the type of reductant
    Wang, Zhanfeng
    Fu, Xiaodi
    Diao, Wenwen
    Wu, Yao
    Rovira, Carme
    Wang, Binju
    CHEMICAL SCIENCE, 2025, 16 (07) : 3173 - 3186
  • [4] Carbohydrate-binding modules enhance H2O2 tolerance by promoting lytic polysaccharide monooxygenase active site H2O2 consumption
    Gao, Wa
    Li, Tang
    Zhou, Haichuan
    Ju, Jiu
    Yin, Heng
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2024, 300 (01)
  • [5] Reactivity of O2 versus H2O2 with polysaccharide monooxygenases
    Hangasky, John A.
    Iavarone, Anthony T.
    Marletta, Michael A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (19) : 4915 - 4920
  • [6] MITOCHONDRIAL H2O2 FORMATION AT SITE II
    LOSCHEN, G
    AZZI, A
    FLOHE, L
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1973, 354 (07): : 791 - 794
  • [7] Scission of Glucosidic Bonds by a Lentinus similis Lytic Polysaccharide Monooxygenases Is Strictly Dependent on H2O2 while the Oxidation of Saccharide Products Depends on O2
    Brander, Soren
    Tokin, Radina
    Ipsen, Johan O.
    Jensen, Poul Erik
    Hernandez-Rollan, Cristina
    Norholm, Morten H. H.
    Lo Leggio, Leila
    Dupree, Paul
    Johansen, Katja S.
    ACS CATALYSIS, 2021, 11 (22) : 13848 - 13859
  • [8] Insights into the H2O2-driven catalytic mechanism of fungal lytic polysaccharide monooxygenases
    Hedison, Tobias M.
    Breslmayr, Erik
    Shanmugam, Muralidharan
    Karnpakdee, Kwankao
    Heyes, Derren J.
    Green, Anthony P.
    Ludwig, Roland
    Scrutton, Nigel S.
    Kracher, Daniel
    FEBS JOURNAL, 2021, 288 (13) : 4115 - 4128
  • [9] Oxidation of cycloalkanes by H2O2 using a copper-hemicryptophane complex as a catalyst
    Perraud, Olivier
    Sorokin, Alexander B.
    Dutasta, Jean-Pierre
    Martinez, Alexandre
    CHEMICAL COMMUNICATIONS, 2013, 49 (13) : 1288 - 1290
  • [10] H2O2 oxidation of lignin model dimers catalyzed by copper(II)- phenanthroline
    Halma, Matilte
    Lachenal, Dominique
    Marlin, Nathalie
    Deronzier, Alain
    Brochier, Marie Christine
    Zarubin, Mikhail
    INDUSTRIAL CROPS AND PRODUCTS, 2015, 74 : 514 - 522