Random matrix theory of the proximity effect in disordered wires

被引:6
作者
Titov, M [1 ]
Schomerus, H [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevB.67.024410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study analytically the local density of states in a disordered normal-metal wire (N) at ballistic distance to a superconductor (S). Our calculation is based on a scattering-matrix approach, which concerns for wave-function localization in the normal metal, and extends beyond the conventional semiclassical theory based on Usadel and Eilenberger equations. We also analyze how a finite transparency of the NS interface modifies the spectral proximity effect and demonstrate that our results agree in the dirty diffusive limit with those obtained from the Usadel equation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Conductance spectroscopy on Majorana wires and the inverse proximity effect
    Danon, Jeroen
    Hansen, Esben B.
    Flensberg, Karsten
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [22] PROPERTIES OF PROXIMITY EFFECT AND FILAMENT COUPLING IN NBTI WIRES
    YASOHAMA, K
    NAGANO, S
    KUBOTA, Y
    OGASAWARA, T
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1995, 5 (02) : 729 - 732
  • [23] Wave propagation over parllel wires - The proximity effect
    Carson, JR
    PHILOSOPHICAL MAGAZINE, 1921, 41 (244): : 607 - 633
  • [24] Random matrix theory and random uncertainties modeling
    Soize, C.
    COMPUTATIONAL STOCHASTIC MECHANICS, 2003, : 575 - 581
  • [25] Bifurcations and random matrix theory
    Pollner, P
    Eckhardt, B
    EUROPHYSICS LETTERS, 2001, 53 (06): : 703 - 708
  • [26] Superstatistics in random matrix theory
    Abul-Magd, AY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 361 (01) : 41 - 54
  • [27] Developments in random matrix theory
    Forrester, PJ
    Snaith, NC
    Verbaarschot, JJM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : R1 - R10
  • [28] Dualities in random matrix theory
    Forrester, Peter J.
    arXiv,
  • [29] A method for constructing random matrix models of disordered bosons
    Huckleberry, Alan
    Schaffert, Kathrin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (33)
  • [30] Quantum Quenches with Random Matrix Hamiltonians and Disordered Potentials
    Kolley, Fabian
    Bohigas, Oriol
    Fine, Boris V.
    ANNALEN DER PHYSIK, 2017, 529 (12)