Relaxation in a completely integrable many-body quantum system:: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons

被引:1264
作者
Rigol, Marcos
Dunjko, Vanja
Yurovsky, Vladimir
Olshanii, Maxim [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA
[4] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.98.050405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we pose the question of whether a many-body quantum system with a full set of conserved quantities can relax to an equilibrium state, and, if it can, what the properties of such a state are. We confirm the relaxation hypothesis through an ab initio numerical investigation of the dynamics of hard-core bosons on a one-dimensional lattice. Further, a natural extension of the Gibbs ensemble to integrable systems results in a theory that is able to predict the mean values of physical observables after relaxation. Finally, we show that our generalized equilibrium carries more memory of the initial conditions than the usual thermodynamic one. This effect may have many experimental consequences, some of which have already been observed in the recent experiment on the nonequilibrium dynamics of one-dimensional hardcore bosons in a harmonic potential [T. Kinoshita et al., Nature (London) 440, 900 (2006)].
引用
收藏
页数:4
相关论文
共 48 条
[21]   INFORMATION THEORY AND STATISTICAL MECHANICS [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 106 (04) :620-630
[22]   INFORMATION THEORY AND STATISTICAL MECHANICS .2. [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 108 (02) :171-190
[23]   A quantum Newton's cradle [J].
Kinoshita, T ;
Wenger, T ;
Weiss, DS .
NATURE, 2006, 440 (7086) :900-903
[24]   Observation of a one-dimensional Tonks-Girardeau gas [J].
Kinoshita, T ;
Wenger, T ;
Weiss, DS .
SCIENCE, 2004, 305 (5687) :1125-1128
[25]   1D Bose gases in an optical lattice [J].
Köhl, M ;
Stöferle, T ;
Moritz, H ;
Schori, C ;
Esslinger, T .
APPLIED PHYSICS B-LASERS AND OPTICS, 2004, 79 (08) :1009-1012
[27]   2 SOLUBLE MODELS OF AN ANTIFERROMAGNETIC CHAIN [J].
LIEB, E ;
SCHULTZ, T ;
MATTIS, D .
ANNALS OF PHYSICS, 1961, 16 (03) :407-466
[28]   EXACT ANALYSIS OF AN INTERACTING BOSE GAS .1. GENERAL SOLUTION AND GROUND STATE [J].
LIEB, EH ;
LINIGER, W .
PHYSICAL REVIEW, 1963, 130 (04) :1605-+
[29]   NON-ERGODICITY OF PHASE FUNCTIONS IN CERTAIN SYSTEMS [J].
MAZUR, P .
PHYSICA, 1969, 43 (04) :533-+
[30]   STUDY OF EXACTLY SOLUBLE ONE-DIMENSIONAL N-BODY PROBLEMS [J].
MCGUIRE, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (05) :622-&