Uniqueness results for the moonshine vertex operator algebra

被引:11
作者
Dong, Chongying [1 ]
Griess, Robert L., Jr.
Lam, Ching Hung
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
关键词
D O I
10.1353/ajm.2007.0009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the vertex operator algebra V is isomorphic to the moonshine VOA 0 of Frenkel-Lepowsky-Meurman if it satisfies conditions (a,b,c,d) or (a',b,c,d). These conditions are: (a) V is the only irreducible module for itself and V is C-2-cofinite; (a') dim V <= dim V-n for n >= 3; (b) the central charge is 24; (c) V-1 = 0; (d) V-2 (under the first product on V) is isomorphic to the Griess algebra. Our two main theorems therefore establish weak versions of the FLM uniqueness conjecture for the moonshine vertex operator algebra. We believe that these are the first such results.
引用
收藏
页码:583 / 609
页数:27
相关论文
共 31 条
[1]   Rationality, regularity, and C2-cofiniteness [J].
Abe, T ;
Buhl, G ;
Dong, CY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (08) :3391-3402
[2]  
[Anonymous], 1994, CONSTRUCTION MOONSHI
[3]  
[Anonymous], 1987, ADV SER MATH PHYS
[4]  
Conway JH., 1988, SPHERE PACKINGS LATT, DOI 10.1007/978-1-4757-2016-7
[5]  
Dong C., 1998, P C MONST LIE ALG OH, P27
[6]  
Dong C., 1994, PROC S PURE MATH, V56, P295
[7]  
Dong C., 1993, PROGR MATH, V112
[8]  
Dong Chongying, 1994, Contemp. Math., V175, P27, DOI [10.1090/conm/175/01835, DOI 10.1090/CONM/175/01835]
[9]   Twisted representations of vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :571-600
[10]   Regularity of rational vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
ADVANCES IN MATHEMATICS, 1997, 132 (01) :148-166