Genome Editing Technologies for Rice Improvement: Progress, Prospects, and Safety Concerns

被引:48
作者
Zafar, Kashaf [1 ,2 ,3 ]
Sedeek, Khalid E. M. [3 ]
Rao, Gundra Sivakrishna [3 ]
Khan, Muhammad Zuhaib [1 ]
Amin, Imran [1 ]
Kamel, Radwa [3 ]
Mukhtar, Zahid [1 ]
Zafar, Mehak [1 ]
Mansoor, Shahid [1 ]
Mahfouz, Magdy M. [3 ]
机构
[1] Constituent Coll Pakistan Inst Engn & Appl Sci, Natl Inst Biotechnol & Genet Engn NIBGE, Agr Biotechnol Div, Faisalabad, Pakistan
[2] Balochistan Univ Informat Technol Engn & Managemen, Dept Biotechnol, Quetta, Pakistan
[3] King Abdullah Univ Sci & Technol, Div Biol Sci, Lab Genome Engn & Synthet Biol, Thuwal, Saudi Arabia
来源
FRONTIERS IN GENOME EDITING | 2020年 / 2卷
关键词
genome editing; CRISPR-Cas9; crop improvement; rice; CRISPR-Cas12a; base editors; safety concerns; transgene-free; HOMOLOGOUS RECOMBINATION; DNA REPLICONS; BASE; CRISPR-CAS9; GENE; PLANTS; RESISTANCE; EFFICIENCY; WHEAT; MUTAGENESIS;
D O I
10.3389/fgeed.2020.00005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Rice (Oryza sativa) is an important staple food crop worldwide; to meet the growing nutritional requirements of the increasing population in the face of climate change, qualitative and quantitative traits of rice need to be improved. Stress-tolerant crop varieties must be developed with stable or higher yields under stress conditions. Genome editing and speed breeding have improved the accuracy and pace of rice breeding. New breeding technologies including genome editing have been established in rice, expanding the potential for crop improvement. Recently, other genome editing techniques such as CRISPR-directed evolution, CRISPR-Cas12a, and base editors have also been used for efficient genome editing in rice. Since rice is an excellent model system for functional studies due to its small genome and close syntenic relationships with other cereal crops, new genome-editing technologies continue to be developed for use in rice. In this review, we focus on genome-editing tools for rice improvement to address current challenges and provide examples of genome editing in rice. We also shed light on expanding the scope of genome editing and systems for delivering homology-directed repair templates. Finally, we discuss safety concerns and methods for obtaining transgene-free crops.
引用
收藏
页数:16
相关论文
共 122 条
  • [1] Production of high oleic/low linoleic rice by genome editing
    Abe, Kiyomi
    Araki, Etsuko
    Suzuki, Yasuhiro
    Toki, Seiichi
    Saika, Hiroaki
    [J]. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 131 : 58 - 62
  • [2] Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice
    Ali, Zahir
    Shami, Ashwag
    Sedeek, Khalid
    Kamel, Radwa
    Alhabsi, Abdulrahman
    Tehseen, Muhammad
    Hassan, Norhan
    Butt, Haroon
    Kababji, Ahad
    Hamdan, Samir M.
    Mahfouz, Magdy M.
    [J]. COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [3] Efficient Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System
    Ali, Zahir
    Abul-faraj, Aala
    Li, Lixin
    Ghosh, Neha
    Piatek, Marek
    Mahjoub, Ali
    Aouida, Mustapha
    Piatek, Agnieszka
    Baltes, Nicholas J.
    Voytas, Daniel F.
    Dinesh-Kumar, Savithramma
    Mahfouz, Magdy M.
    [J]. MOLECULAR PLANT, 2015, 8 (08) : 1288 - 1291
  • [4] Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds
    Aliaga-Franco, Norma
    Zhang, Cunjin
    Presa, Silvia
    Srivastava, Anjil K.
    Granell, Antonio
    Alabadi, David
    Sadanandom, Ari
    Blazquez, Miguel A.
    Minguet, Eugenio G.
    [J]. FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [5] The Rise of the CRISPR/Cpf1 System for Efficient Genome Editing in Plants
    Alok, Anshu
    Sandhya, Dulam
    Jogam, Phanikanth
    Rodrigues, Vandasue
    Bhati, Kaushal K.
    Sharma, Himanshu
    Kumar, Jitendra
    [J]. FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [6] RNA virus interference via CRISPR/Cas13a system in plants
    Aman, Rashid
    Ali, Zahir
    Butt, Haroon
    Mahas, Ahmed
    Aljedaani, Fatimah
    Khan, Muhammad Zuhaib
    Ding, Shouwei
    Mahfouz, Magdy
    [J]. GENOME BIOLOGY, 2018, 19
  • [7] Engineered Dwarf Male-Sterile Rice: A Promising Genetic Tool for Facilitating Recurrent Selection in Rice
    Ansari, Afsana
    Wang, Chunlian
    Wang, Jian
    Wang, Fujun
    Liu, Piqing
    Gao, Ying
    Tang, Yongchao
    Zhao, Kaijun
    [J]. FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [8] Search-and-replace genome editing without double-strand breaks or donor DNA
    Anzalone, Andrew V.
    Randolph, Peyton B.
    Davis, Jessie R.
    Sousa, Alexander A.
    Koblan, Luke W.
    Levy, Jonathan M.
    Chen, Peter J.
    Wilson, Christopher
    Newby, Gregory A.
    Raguram, Aditya
    Liu, David R.
    [J]. NATURE, 2019, 576 (7785) : 149 - +
  • [9] DNA Replicons for Plant Genome Engineering
    Baltes, Nicholas J.
    Gil-Humanes, Javier
    Cermak, Tomas
    Atkins, Paul A.
    Voytas, Daniel F.
    [J]. PLANT CELL, 2014, 26 (01) : 151 - 163
  • [10] Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors
    Blanvillain-Baufume, Servane
    Reschke, Maik
    Sole, Montserrat
    Auguy, Florence
    Doucoure, Hinda
    Szurek, Boris
    Meynard, Donaldo
    Portefaix, Murielle
    Cunnac, Sebastien
    Guiderdoni, Emmanuel
    Boch, Jens
    Koebnik, Ralf
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2017, 15 (03) : 306 - 317