Global well-posedness for the Benjamin equation in low regularity

被引:12
作者
Li, Yongsheng [1 ]
Wu, Yifei [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Benjamin equation; Bourgain space; Global well-posedness; I-method; CAUCHY-PROBLEM; KDV;
D O I
10.1016/j.na.2010.04.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the initial value problem of the Benjamin equation partial derivative(t)u + nu H(partial derivative(2)(x)u) + mu partial derivative(3)(x)u + partial derivative(x)u(2) = 0, where u : R x [0, T] bar right arrow R, and the constants nu, mu is an element of R, mu not equal 0. We use the I-method to show that it is globally well-posed in Sobolev spaces H-s(R) for s > -3/4. Moreover, we use some argument to obtain a good estimative for the lifetime of the local solution, and employ some multiplier decomposition argument to construct the almost conserved quantities. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1610 / 1625
页数:16
相关论文
共 50 条
[31]   Local and global well-posedness for the 2D Zakharov-Kuznetsov-Burgers equation in low regularity Sobolev space [J].
Hirayama, Hiroyuki .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (07) :4089-4116
[32]   GLOBAL WELL-POSEDNESS OF THE RELATIVISTIC BOLTZMANN EQUATION [J].
Wang, Yong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) :5637-5694
[33]   Well-posedness of the Cauchy problem of a water wave equation with low regularity initial data [J].
Wang, Hua ;
Cui, Shangbin .
MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (9-10) :1118-1132
[34]   Well-posedness of the Cauchy problem for Ostrovsky, Stepanyams and Tsimring equation with low regularity data [J].
Zhao, Xiangqing ;
Cui, Shangbin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) :778-787
[35]   Global Well-Posedness and Limit Behavior for a Higher-Order Benjamin-Ono Equation [J].
Molinet, Luc ;
Pilod, Didier .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (11) :2050-2080
[36]   Global well-posedness of a binary-ternary Boltzmann equation [J].
Ampatzoglou, Ioakeim ;
Gamba, Irene M. ;
Pavlovic, Natasa ;
Taskovic, Maja .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (02) :327-369
[37]   LOW REGULARITY LOCAL WELL-POSEDNESS FOR THE ZERO ENERGY NOVIKOV-VESELOV EQUATION [J].
Adams, Joseph ;
Gruenrock, Axel .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (01) :19-35
[38]   Global Well-Posedness for the Periodic Generalized Korteweg-De Vries Equation [J].
Bao, Jiguang ;
Wu, Yifei .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (05) :1797-1825
[39]   Global smoothing for the periodic Benjamin equation in low-regularity spaces [J].
Shi ShaoGuang ;
Li JunFeng .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (10) :2051-2061
[40]   Local well-posedness for periodic Benjamin equation with small initial data [J].
Shaoguang Shi ;
Junfeng Li .
Boundary Value Problems, 2015