Global well-posedness for the Benjamin equation in low regularity

被引:12
作者
Li, Yongsheng [1 ]
Wu, Yifei [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Benjamin equation; Bourgain space; Global well-posedness; I-method; CAUCHY-PROBLEM; KDV;
D O I
10.1016/j.na.2010.04.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the initial value problem of the Benjamin equation partial derivative(t)u + nu H(partial derivative(2)(x)u) + mu partial derivative(3)(x)u + partial derivative(x)u(2) = 0, where u : R x [0, T] bar right arrow R, and the constants nu, mu is an element of R, mu not equal 0. We use the I-method to show that it is globally well-posed in Sobolev spaces H-s(R) for s > -3/4. Moreover, we use some argument to obtain a good estimative for the lifetime of the local solution, and employ some multiplier decomposition argument to construct the almost conserved quantities. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1610 / 1625
页数:16
相关论文
共 50 条
[21]   Global well-posedness for the KdV equations on the real line with low regularity forcing terms [J].
Tsugawa, Kotaro .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (05) :681-713
[22]   Global Well-posedness for the Defocusing, Quintic Nonlinear Schrodinger Equation in One Dimension for Low Regularity Data [J].
Dodson, Benjamin G. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (04) :870-893
[23]   Global Well-posedness and Global Attractor for Two-dimensional Zakharov-Kuznetsov Equation [J].
Shan, Min Jie .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (09) :969-1000
[24]   Local well-posedness for periodic Benjamin equation with small initial data [J].
Shi, Shaoguang ;
Li, Junfeng .
BOUNDARY VALUE PROBLEMS, 2015, :1-15
[25]   LOCAL AND GLOBAL WELL-POSEDNESS RESULTS FOR THE BENJAMIN-ONO-ZAKHAROV-KUZNETSOV EQUATION [J].
Ribaud, Francis ;
Vento, Stephane .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (01) :449-483
[26]   Global well-posedness and inviscid limit for the generalized Benjamin-Ono-Burgers equation [J].
Mingjuan Chen ;
Guo, Boling ;
Han, Lijia .
APPLICABLE ANALYSIS, 2021, 100 (04) :804-818
[27]   GLOBAL WELL-POSEDNESS FOR THE k-DISPERSION GENERALIZED BENJAMIN-ONO EQUATION [J].
Farah, Luiz G. ;
Linares, Felipe ;
Pastor, Ademir .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (7-8) :601-612
[28]   The local well-posedness of the coupled Ostrovsky system with low regularity [J].
Luo, Ting ;
Zhang, Weifeng .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80
[29]   Well-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity [J].
Li, Yongsheng ;
Yan, Wei ;
Yang, Xingyu .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) :465-486
[30]   Global low regularity solutions to the Benjamin equation in weighted spaces [J].
Shindin, Sergey ;
Parumasur, Nabendra .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 250