The survey of planetary nebulae in Andromeda (M 31) II. Age-velocity dispersion relation in the disc from planetary nebulae

被引:34
作者
Bhattacharya, Souradeep [1 ]
Arnaboldi, Magda [1 ]
Caldwell, Nelson [2 ]
Gerhard, Ortwin [3 ]
Blana, Matias [3 ]
McConnachie, Alan [4 ]
Hartke, Johanna [5 ]
Guhathakurta, Puragra [6 ]
Pulsoni, Claudia [3 ]
Freeman, Kenneth C. [7 ]
机构
[1] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[2] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[3] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany
[4] NRC Herzberg Inst Astrophys, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada
[5] European Southern Observ, Alonso de Cordova 3107, Santiago, Chile
[6] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA
[7] Mt Stromlo & Siding Spring Observ, Res Sch Astron & Astrophys, Cotter Rd, Weston, ACT 2611, Australia
关键词
galaxies: individual: M 31; galaxies: kinematics and dynamics; planetary nebulae: general; GIANT SOUTHERN STREAM; KINEMATIC PROPERTIES; SOLAR NEIGHBORHOOD; GALAXY; SIMULATION; DYNAMICS; ORBITS; STARS; M31;
D O I
10.1051/0004-6361/201935898
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The age velocity dispersion relation is an important tool to understand the evolution of the disc of the Andromeda galaxy (M 31) in comparison with the Milky Way. Aims. We use planetary nebulae (PNe) to obtain the age velocity dispersion relation in different radial bins of the M 31 disc. Methods. We separate the observed PNe sample based on their extinction values into two distinct age populations in the M 31 disc. The observed velocities of our high- and low -extinction PNe, which correspond to higher- and lower-mass progenitors, respectively, are fitted in de -projected elliptical bins to obtain their rotational velocities, 170, and corresponding dispersions, o-. We assign ages to the two PN populations by comparing central-star properties of an archival sub -sample of PNe, that have models fitted to their observed spectral features, to stellar evolution tracks. Results. For the high- and low -extinction PNe, we find ages of 2.5 and 4.5 Gyr, respectively, with distinct kinematics beyond a deprojected radius RGG = 14 kpc. At RGc = 17-20 kpc, which is the equivalent distance in disc scale lengths of the Sun in the Milky Way disc, we obtain cro, 2.5 Gyr = 61 14 km s 1 and cro, 4.5 Gyr = 101 13 km s-1. The age velocity dispersion relation for the M 31 disc is obtained in two radial bins, RGG = 14-17 and 17-20 kpc. Conclusions. The high- and low -extinction PNe are associated with the young thin and old thicker disc of M 31, respectively, whose velocity dispersion values increase with age. These values are almost twice and three times that of the Milky Way disc stellar population of corresponding ages, respectively. From comparison with simulations of merging galaxies, we find that the age velocity dispersion relation in the M 31 disc measured using PNe is indicative of a single major merger that occurred 2.5-4.5 Gyr ago with an estimated merger mass ratio X1:5.
引用
收藏
页数:8
相关论文
共 51 条
[31]   Dissecting simulated disc galaxies - II. The age-velocity relation [J].
Martig, Marie ;
Minchev, Ivan ;
Flynn, Chris .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (03) :2452-2462
[32]  
MCCONNACHIE AW, 2018, APJ, V868, DOI DOI 10.3847/1538-4357/AAE8E7
[33]   A deep kinematic survey of planetary nebulae in the Andromeda galaxy using the Planetary Nebula Spectrograph [J].
Merrett, H. R. ;
Merrifield, M. R. ;
Douglas, N. G. ;
Kuijken, K. ;
Romanowsky, A. J. ;
Napolitano, N. R. ;
Arnaboldi, M. ;
Capaccioli, M. ;
Freeman, K. C. ;
Gerhard, O. ;
Coccato, L. ;
Carter, D. ;
Evans, N. W. ;
Wilkinson, M. I. ;
Halliday, C. ;
Bridges, T. J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 369 (01) :120-142
[34]  
Mestel L., 1963, MNRAS, V126, P553, DOI [DOI 10.1093/MNRAS/126.6.553, 10.1093/mnras/126.6.553]
[35]   The Geneva-Copenhagen survey of the Solar neighbourhood -: Ages, metallicities, and kinematic properties of ∼14000 F and G dwarfs [J].
Nordström, B ;
Mayor, M ;
Andersen, J ;
Holmberg, J ;
Pont, F ;
Jorgensen, BR ;
Olsen, EH ;
Udry, S ;
Mowlavi, N .
ASTRONOMY & ASTROPHYSICS, 2004, 418 (03) :989-1019
[36]  
Oliphant T. E., 2015, Guide to NumPy, V2nd ed.
[37]   The extended Planetary Nebula Spectrograph (ePN.S) early-type galaxy survey: The kinematic diversity of stellar halos and the relation between halo transition scale and stellar mass [J].
Pulsoni, C. ;
Gerhard, O. ;
Arnaboldi, M. ;
Coccato, L. ;
Longobardi, A. ;
Napolitano, N. R. ;
Moylan, E. ;
Narayan, C. ;
Gupta, V. ;
Burkert, A. ;
Capaccioli, M. ;
Chies-Santos, A. L. ;
Cortesi, A. ;
Freeman, K. C. ;
Kuijken, K. ;
Merrifield, M. R. ;
Romanowsky, A. J. ;
Tortora, C. .
ASTRONOMY & ASTROPHYSICS, 2018, 618
[38]   SINKING SATELLITES OF SPIRAL SYSTEMS [J].
QUINN, PJ ;
GOODMAN, J .
ASTROPHYSICAL JOURNAL, 1986, 309 (02) :472-495
[39]  
QUIRK A, 2019, APJ, V871, DOI DOI 10.3847/1538-4357/AAF1BA
[40]   A new population of planetary nebulae discovered in the Large Magellanic Cloud - III. The luminosity function [J].
Reid, Warren A. ;
Parker, Quentin A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 405 (02) :1349-1374