Entry length and wall shear stress in uniformly collapsed veins

被引:0
|
作者
Thiriet, M [1 ]
Naili, S
Ribreau, C
机构
[1] UPMC, UMR CNRS 7598, LJL2, F-75252 Paris, France
[2] INRIA, Projet M3N, F-78153 Le Chesnay, France
[3] UPVM, UMR CNRS 7052, LMP B2OA, F-94010 Creteil, France
[4] LGMPB, IUT, F-94234 Cachan, France
来源
PROGRESS IN EXPERIMENTAL AND COMPUTATIONAL MECHANICS IN ENGINEERING | 2003年 / 243-2卷
关键词
collapsed tube flow; contact; entry length; finite element method; wall shear stress;
D O I
10.4028/www.scientific.net/KEM.243-244.243
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The laminar steady flow of incompressible Newtonian fluid is computed in rigid pipes with wall configurations corresponding to various degrees of collapse of a flexible tube to determine both the entry length and the wall shear stress. The investigated configurations range from the unstressed state to a contact collapse with a finite and infinite curvature radius at the contact point. The cross-section configurations are not aimed at mimicing actual collapsed veins but at creating at the cell scale a shear stress which generates a shear force and a shear torque applied at the cell inertia center. The Navier-Stokes equations were solved by a finite element method. The numerical tests are performed with the same value of the volume flow rate whatever the tube configuration and the test Reynolds number (35, 500 and 1000). Entry length, axial and cross variations in wall shear stress axe computed to design flow chambers and to explore the mechanotransduction function of the venous endothelial cells.
引用
收藏
页码:243 / 248
页数:6
相关论文
共 50 条
  • [31] Wall shear stress on LDL accumulation in human RCAs
    Soulis, Johannes V.
    Fytanidis, Dimitrios K.
    Papaioannou, Vassilios C.
    Giannoglou, George D.
    MEDICAL ENGINEERING & PHYSICS, 2010, 32 (08) : 867 - 877
  • [32] Wall shear stress in intracranial aneurysms and adjacent arteries
    Fuyu Wang
    Bainan Xu
    Zhenghui Sun
    Chen Wu
    Xiaojun Zhang
    Neural Regeneration Research, 2013, 8 (11) : 1007 - 1015
  • [33] Protective or destructive: High wall shear stress and atherosclerosis
    Eshtehardi, Parham
    Teng, Zhongzhao
    ATHEROSCLEROSIS, 2016, 251 : 501 - 503
  • [34] Wall shear stress in intracranial aneurysms and adjacent arteries
    Wang, Fuyu
    Xu, Bainan
    Sun, Zhenghui
    Wu, Chen
    Zhang, Xiaojun
    NEURAL REGENERATION RESEARCH, 2013, 8 (11) : 1007 - 1015
  • [35] An instrumentation grade wall shear stress sensing system
    Barnard, Casey
    Meloy, Jessica
    Sheplak, Mark
    2016 IEEE SENSORS, 2016,
  • [36] Wall Shear Stress Characteristics for the Progression of the Disease, Atherosclerosis
    Goswami P.
    Mandal D.K.
    Manna N.K.
    Chakrabarti S.
    Journal of The Institution of Engineers (India): Series C, 2015, 96 (03) : 311 - 323
  • [37] A carbon nanotube sensor for wall shear stress measurement
    H. L. Bai
    W. J. Li
    W. Chow
    Y. Zhou
    Experiments in Fluids, 2010, 48 : 679 - 691
  • [38] Design of micro sensor for wall shear stress measurement
    Lü H.
    Jiang C.
    Deng J.
    Ma B.
    Yuan W.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2010, 46 (24): : 54 - 60
  • [39] Wall orientation and shear stress in the lattice Boltzmann model
    Matyka, Maciej
    Koza, Zbigniew
    Miroslaw, Lukasz
    COMPUTERS & FLUIDS, 2013, 73 : 115 - 123
  • [40] Wall Shear Stress Evolution in Carotid Artery Bifurcation
    Bernad, S. I.
    Bosioc, A. I.
    Totorean, A. F.
    Petre, I.
    Bernad, E. S.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863