REFINEMENTS OF TWO DETERMINANTAL INEQUALITIES FOR POSITIVE SEMIDEFINITE MATRICES

被引:4
作者
Hong, Yan [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Inner Mongolia Minzu Univ, Coll Math & Phys, Tongliao 028043, Inner Mongolia, Peoples R China
[2] Henan Polytech Univ, Inst Math, Jiaozuo 454003, Henan, Peoples R China
[3] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2022年 / 25卷 / 03期
关键词
Determinantal inequality; eigenvalue; positive semidefinite matrix; determinant;
D O I
10.7153/mia-2022-25-42
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A,B,C is an element of C-n Chi n be positive semidefinite matrices and let |A|, |B|, |C| be determinants of A, B,C is an element of C-n Chi n respectively. In this paper, the authors prove two determinantal inequalities |A+ B+C| + |C| >= |A+ C| + |B+ C| + (2(n) - 2) |AB|(1/ 2) + 3(3(n-1) - 2(n) + 1) |ABC|(1/3) and |A+ B+ C| + |A| + |B| + |C| >= |A+ B| + |A+ C| + |B+ C| + 3(3(n-1) - 2(n) + 1) |ABC|(1/3). These two inequalities refine known ones.
引用
收藏
页数:1
相关论文
共 5 条
[1]  
HARTFIEL DJ, 1973, P AM MATH SOC, V41, P463
[2]  
HONG Y., 2021, RES SQUARE
[3]  
Lin MH, 2014, ELECTRON J LINEAR AL, V27, P821
[4]  
Marshall AW, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-0-387-68276-1
[5]  
Zhang F., 2011, Matrix Theory: Basic Results and Techniques, V2nd, DOI DOI 10.1007/978-1-4614-1099-7