THE MODAL LOGIC OF INNER MODELS

被引:3
作者
Inamdar, Tanmay [1 ]
Lowe, Benedikt [2 ,3 ,4 ]
机构
[1] Univ E Anglia, Sch Math, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[2] Univ Amsterdam, Inst Log Language & Computat, Postbus 94242, NL-1090 GE Amsterdam, Netherlands
[3] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
[4] Univ Cambridge Corpus Christi Coll, Trumpington St, Cambridge CB2 1RH, England
关键词
Modal logic; multiverse; inner model; ground model; forcing; MAXIMALITY PRINCIPLES; LARGE CARDINALS;
D O I
10.1017/jsl.2015.67
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using techniques developed by Hamkins, Reitz and the second author, we determine the modal logic of inner models.
引用
收藏
页码:225 / 236
页数:12
相关论文
共 24 条
  • [1] Alexander C., 2015, RIMS KOKYUROKU, V1949, P5
  • [2] [Anonymous], 1996, A New Introduction to Modal Logic
  • [3] [Anonymous], 2004, THESIS CITY U NEW YO
  • [4] [Anonymous], 2001, CAMBRIDGE TRACTS THE
  • [5] Chagrov A., 1997, Oxford Logic Guides, V35
  • [6] Fatal Heyting Algebras and Forcing Persistent Sentences
    Esakia, Leo
    Lowe, Benedikt
    [J]. STUDIA LOGICA, 2012, 100 (1-2) : 163 - 173
  • [7] Friedman Sy, 2012, SET GENERIC MU UNPUB
  • [8] Closed maximality principles: Implications, separations and combinations
    Fuchs, Gunter
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2008, 73 (01) : 276 - 308
  • [9] COMBINED MAXIMALITY PRINCIPLES UP TO LARGE CARDINALS
    Fuchs, Gunter
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2009, 74 (03) : 1015 - 1046
  • [10] Goranko V, 2007, STUD LOGIC PRACT REA, V3, P249