ON EMERGING SCARRED SURFACES FOR THE EINSTEIN VACUUM EQUATIONS

被引:9
作者
Klainerman, Sergiu [1 ]
Rodnianski, Igor [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Einstein equations; trapped surface; black hole; vacuum; scarred surface; double null foliation; Ricci coefficients; null second fundamental form; expansion; energy estimates; characteristic;
D O I
10.3934/dcds.2010.28.1007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We follow up our work [4] concerning the formation of trapped surfaces. We provide a considerable extension of our result there on pre-scared surfaces to allow for the formation of a surface with multiple pre-scared angular regions which, together, can cover an arbitrarily large portion of the surface. In a forthcoming paper we plan to show that once a significant part of the surface is pre-scared, it can be additionally deformed to produce a bona-fide trapped surface.
引用
收藏
页码:1007 / 1031
页数:25
相关论文
共 7 条
[1]  
Christodoulou D., 2009, EMS MONOGRAPHS MATH
[2]  
CHRISTODOULOU D, 1993, PRINCETON MATH SERIE, V41
[3]   A geometric approach to the Littlewood-Paley theory [J].
Klainerman, S ;
Rodnianski, I .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2006, 16 (01) :126-163
[4]   Causal geometry of Einstein-Vacuum spacetimes with finite curvature flux [J].
Klainerman, S ;
Rodnianski, I .
INVENTIONES MATHEMATICAE, 2005, 159 (03) :437-529
[5]  
KLAINERMAN S., 2003, PROG MATH P, V25
[6]  
Klainerman S., 2009, ARXIV09125097
[7]  
REITERER M, 2009, ARXIV09063812