Exploration of Semantic Geo-Object Recognition Based on the Scale Parameter Optimization Method for Remote Sensing Images

被引:0
作者
Wang, Jun [1 ,2 ]
Jiang, Lili [2 ]
Qi, Qingwen [2 ,3 ]
Wang, Yongji [4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Zhengzhou Univ, Sch Geosci & Technol, Zhengzhou 450001, Peoples R China
关键词
GEOBIA; image segmentation; parameter optimization; semantic geo-object; Gaofen-1; images; RESOLUTION SATELLITE IMAGES; SEGMENTATION EVALUATION; ACCURACY ASSESSMENT; CLASSIFICATION; MULTIRESOLUTION; QUALITY; SELECTION; AREA;
D O I
10.3390/ijgi10060420
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image segmentation is of significance because it can provide objects that are the minimum analysis units for geographic object-based image analysis (GEOBIA). Most segmentation methods usually set parameters to identify geo-objects, and different parameter settings lead to different segmentation results; thus, parameter optimization is critical to obtain satisfactory segmentation results. Currently, many parameter optimization methods have been developed and successfully applied to the identification of single geo-objects. However, few studies have focused on the recognition of the union of different types of geo-objects (semantic geo-objects), such as a park. The recognition of semantic geo-objects is likely more crucial than that of single geo-objects because the former type of recognition is more correlated with the human perception. This paper proposes an approach to recognize semantic geo-objects. The key concept is that a single geo-object is the smallest component unit of a semantic geo-object, and semantic geo-objects are recognized by iteratively merging single geo-objects. Thus, the optimal scale of the semantic geo-objects is determined by iteratively recognizing the optimal scales of single geo-objects and using them as the initiation point of the reset scale parameter optimization interval. In this paper, we adopt the multiresolution segmentation (MRS) method to segment Gaofen-1 images and tested three scale parameter optimization methods to validate the proposed approach. The results show that the proposed approach can determine the scale parameters, which can produce semantic geo-objects.
引用
收藏
页数:15
相关论文
共 56 条
[1]  
Baatz M., 2000, ANGEW GEOGRAPHISCHE, P12, DOI DOI 10.3390/RS5010183
[2]   Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 96 :67-75
[3]   Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [J].
Benz, UC ;
Hofmann, P ;
Willhauck, G ;
Lingenfelder, I ;
Heynen, M .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2004, 58 (3-4) :239-258
[4]   Object based image analysis for remote sensing [J].
Blaschke, T. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) :2-16
[5]   Geographic Object-Based Image Analysis - Towards a new paradigm [J].
Blaschke, Thomas ;
Hay, Geoffrey J. ;
Kelly, Maggi ;
Lang, Stefan ;
Hofmann, Peter ;
Addink, Elisabeth ;
Feitosa, Raul Queiroz ;
van der Meer, Freek ;
van der Werff, Harald ;
van Coillie, Frieke ;
Tiede, Dirk .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 87 :180-191
[6]   On the Objectivity of the Objective Function-Problems with Unsupervised Segmentation Evaluation Based on Global Score and a Possible Remedy [J].
Boeck, Sebastian ;
Immitzer, Markus ;
Atzberger, Clement .
REMOTE SENSING, 2017, 9 (08)
[7]   A local approach to optimize the scale parameter in multiresolution segmentation for multispectral imagery [J].
Canovas-Garcia, F. ;
Alonso-Sarria, F. .
GEOCARTO INTERNATIONAL, 2015, 30 (08) :937-961
[8]   Unsupervised performance evaluation of image segmentation [J].
Chabrier, Sebastien ;
Emile, Bruno ;
Rosenberger, Christophe ;
Laurent, Helene .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1)
[9]   Semi-Automated Road Detection From High Resolution Satellite Images by Directional Morphological Enhancement and Segmentation Techniques [J].
Chaudhuri, D. ;
Kushwaha, N. K. ;
Samal, A. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (05) :1538-1544
[10]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848