Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces

被引:126
作者
Jung, JS [1 ]
机构
[1] Dong A Univ, Dept Math, Pusan 604714, South Korea
关键词
nonexpansive mapping; common fixed points; iteration scheme; sunny and nonexpansive retraction;
D O I
10.1016/j.jmaa.2004.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The iteration scheme for families of nonexpansive mappings, essentially due to Halpern [Bull. Amer. Math. Soc. 73 (1967) 957-961], is established in a Banach space. The main theorem extends a recent result of O'Hara et al. [Nonlinear Anal. 54 (2003) 1417-1426] to a Banach space setting. For the same iteration scheme, with finitely many mappings, a complementary result to a result of Jung and Kim [Bull. Korean Math. Soc. 34 (1997) 93-102] (also Bauschke [J. Math. Anal. Appl. 202 (1996) 150-159]) is obtained by imposing other condition on the sequence of parameters. Our results also improve results in [C. R. Acad. Sci. Ser A-B Paris 284 (1977) 1357-1359; J. Math. Anal. Appl. 211 (1997) 71-83; Arch. Math. 59 (1992) 486-491] in framework of a Hilbert space. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:509 / 520
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1990, TOPICS METRIC FIXED
[2]   POSITIVITY OF DUALITY MAPPINGS [J].
ASPLUND, E .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (02) :200-&
[3]   The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space [J].
Bauschke, HH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (01) :150-159
[4]  
BROWDER FE, 1967, ARCH RATION MECH AN, V24, P82
[5]  
Deutsch F, 1998, NUMER FUNC ANAL OPT, V19, P33, DOI 10.1080/01630569808816813
[6]  
Diestel J., 1975, LECT NOTES MATH, V485
[7]  
Goebel K., 1984, HYPERBOLIC GEOMETRY
[8]   SOME GEOMETRIC PROPERTIES RELATED TO FIXED-POINT THEORY FOR NONEXPANSIVE MAPPINGS [J].
GOSSEZ, JP ;
DOZO, EL .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (03) :565-&
[9]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[10]   The Mann process for perturbed m-accretive operators in Banach spaces [J].
Jung, JS ;
Morales, CH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (02) :231-243