Surface Plasmon Enhanced Thermal Properties of Noble Metallic Nanofluids

被引:4
作者
Lee, Kwang Hong [1 ]
Low, Swee Ling [1 ]
Lim, Geok Kieng [2 ]
Wong, Chee Cheong [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Def Sci Org, Natl Labs, Def Med & Environm Res Inst, Singapore 117510, Singapore
关键词
CONDUCTIVITY; SUSPENSIONS; MODEL;
D O I
10.1166/asl.2010.1095
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We explore here the possible contribution of surface optical properties to the thermal properties of metallic nanofluids During temperature ramping of a gold nanofluid model system, measured Surface Plasmon Resonance (SPR) is found to correlate with Thermal Conductivity Enhancement (TCE) of the nanofluid The depth of the SPR dip in reflectivity spectrum is indicative of the strength of excited SPR and this varies proportionally with the temperature of the nanofluid With an increase in temperature, the SPR strength increases with a corresponding increase in the TCE However, when the strength of the resonance starts to decrease, the TCE starts to increase at a decreasing rate This correlation of SPR to ICE is the strongest in nanofluids with a low concentration of nanoparticles This mechanism of thermal enhancement is most likely attributable to the high surface area to volume ratio of the nanoparticles, and should be operative in other metallic nanoparticle suspensions as well
引用
收藏
页码:149 / 153
页数:5
相关论文
共 25 条
[11]   Heat transfer enhancement through control of thermal dispersion effects [J].
Khaled, ARA ;
Vafai, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (11) :2172-2185
[12]  
Kretschmann E., 1996, Sensors and Actuators B: Chemical, V35, P212
[13]   Model for heat conduction in nanofluids [J].
Kumar, DH ;
Patel, HE ;
Kumar, VRR ;
Sundararajan, T ;
Pradeep, T ;
Das, SK .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :144301-1
[14]   A model for the thermal conductivity of nanofluids - the effect of interfacial layer [J].
Leong, K. C. ;
Yang, C. ;
Murshed, S. M. S. .
JOURNAL OF NANOPARTICLE RESEARCH, 2006, 8 (02) :245-254
[15]   Enhanced thermal conductivity of TiO2 -: water based nanofluids [J].
Murshed, SMS ;
Leong, KC ;
Yang, C .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2005, 44 (04) :367-373
[16]   Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects [J].
Patel, HE ;
Das, SK ;
Sundararajan, T ;
Sreekumaran Nair, A ;
George, B ;
Pradeep, T .
APPLIED PHYSICS LETTERS, 2003, 83 (14) :2931-2933
[17]   Thermal conductivity of nanoscale colloidal solutions (nanofluids) [J].
Prasher, R ;
Bhattacharya, P ;
Phelan, PE .
PHYSICAL REVIEW LETTERS, 2005, 94 (02)
[18]   Probing the gold nanorod-ligand-solvent interface by plasmonic absorption and thermal decay [J].
Schmidt, Aaron J. ;
Alper, Joshua D. ;
Chiesa, Matteo ;
Chen, Gang ;
Das, Sarit K. ;
Hamad-Schifferli, Kimberly .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (35) :13320-13323
[19]   Resonant photon tunneling enhancement of the radiative heat transfer [J].
Volokitin, AI ;
Persson, BNJ .
PHYSICAL REVIEW B, 2004, 69 (04)
[20]   Thermal conductivity of suspensions containing nanosized SiC particles [J].
Xie, H ;
Wang, J ;
Xi, T ;
Liu, Y .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2002, 23 (02) :571-580