ASYMPTOTIC UNCONDITIONALITY

被引:8
作者
Cowell, S. R. [1 ]
Kalton, N. J. [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
REFLEXIVE BANACH-SPACES; OPERATORS; SUBSPACES; PROPERTY; DUALS;
D O I
10.1093/qmath/han036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a separable real Banach space embeds almost isometrically in a space Y with a shrinking 1-unconditional basis if and only if lim(n ->infinity) parallel to x* + x(n)*parallel to = lim(n ->infinity) parallel to x* - x(n)*parallel to whenever x* is an element of X*, (x(n)*)(n=1)(infinity) is a weak*-null sequence and both limits exist. If X is reflexive then Y can be assumed reflexive. These results provide the isometric counterparts of recent work of Johnson and Zheng.
引用
收藏
页码:217 / 240
页数:24
相关论文
共 27 条
[1]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[2]  
[Anonymous], 1991, Lond. Math. Soc. Lecture Notes
[3]  
[Anonymous], CLASSICAL BANACH SPA
[4]  
[Anonymous], GRUNDLEHREN MATHEMAT
[5]   BANACH-SAKS PROPERTIES AND SPREADING MODELS [J].
BEAUZAMY, B .
MATHEMATICA SCANDINAVICA, 1979, 44 (02) :357-384
[6]   TRANSFINITE DUALS OF QUASI-REFLEXIVE BANACH-SPACES [J].
BELLENOT, SF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 273 (02) :551-577
[8]  
Godefroy G, 1997, Q J MATH, V48, P179
[9]   Construction of operators with prescribed behaviour [J].
Grivaux, S .
ARCHIV DER MATHEMATIK, 2003, 81 (03) :291-299
[10]  
HAYDON R, 1991, LECT NOTES MATH, V1470, P1