Fluorescence nanoscopy at the sub-10 nm scale

被引:16
|
作者
Masullo, Luciano A. [1 ,2 ]
Szalai, Alan M. [1 ]
Lopez, Lucia F. [2 ]
Stefani, Fernando D. [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn CONICET, Ctr Invest Bionanociencias CIBION, Godoy Cruz 2390,C1425FQD, Buenos Aires, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Guiraldes 2620,C1428EHA, Buenos Aires, Argentina
关键词
Super-resolution microscopy; Single-molecule localization; Molecular resolution; SINGLE-MOLECULE LOCALIZATION; INDUCED ENERGY-TRANSFER; SUPERRESOLUTION MICROSCOPY; STED MICROSCOPY; OPTICAL NANOSCOPY; GENERAL-METHOD; RESOLUTION; PROBES; TRACKING; LIGHT;
D O I
10.1007/s12551-021-00864-z
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Fluorescence nanoscopy represented a breakthrough for the life sciences as it delivers 20-30 nm resolution using far-field fluorescence microscopes. This resolution limit is not fundamental but imposed by the limited photostability of fluorophores under ambient conditions. This has motivated the development of a second generation of fluorescence nanoscopy methods that aim to deliver sub-10 nm resolution, reaching the typical size of structural proteins and thus providing true molecular resolution. In this review, we present common fundamental aspects of these nanoscopies, discuss the key experimental factors that are necessary to fully exploit their capabilities, and discuss their current and future challenges.
引用
收藏
页码:1101 / 1112
页数:12
相关论文
共 50 条
  • [31] Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps
    Wang, Yi
    Wang, Hailong
    Wang, Yuyang
    Shen, Yanting
    Xu, Shuping
    Xu, Weiqing
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (24) : 15623 - 15629
  • [32] Single-particle analysis for fluorescence nanoscopy
    Bates, Mark
    NATURE METHODS, 2018, 15 (10) : 771 - 772
  • [33] Modern Methods of Fluorescence Nanoscopy in Biology (A Review)
    Solovyeva, D. O.
    Altunina, A. V.
    Tretyak, M. V.
    Mochalov, K. E.
    Oleinikov, V. A.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2024, 50 (04) : 1215 - 1236
  • [34] Dynamic far-field fluorescence nanoscopy
    Westphal, V.
    Lauterbach, M. A.
    Di Nicola, A.
    Hell, S. W.
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [35] Fluorescence Microscopy with 6 nm Resolution on DNA Origami
    Raab, Mario
    Schmied, Juergen J.
    Jusuk, Ija
    Forthmann, Carsten
    Tinnefeld, Philip
    CHEMPHYSCHEM, 2014, 15 (12) : 2431 - 2435
  • [36] One-pot synthesis of sub-10 nm LiNbO3 nanocrystals exhibiting a tunable optical second harmonic response
    Ali, Rana Faryad
    Bilton, Matthew
    Gates, Byron D.
    NANOSCALE ADVANCES, 2019, 1 (06): : 2268 - 2275
  • [37] MINSTED fluorescence localization and nanoscopy
    Weber, Michael
    Leutenegger, Marcel
    Stoldt, Stefan
    Jakobs, Stefan
    Mihaila, Tiberiu S.
    Butkevich, Alexey N.
    Hell, Stefan W.
    NATURE PHOTONICS, 2021, 15 (05) : 361 - 366
  • [38] Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging
    Strauss, Sebastian
    Nickels, Philipp C.
    Strauss, Maximilian T.
    Sabinina, Vilma Jimenez
    Ellenberg, Jan
    Carter, Jeffrey D.
    Gupta, Shashi
    Janjic, Nebojsa
    Jungmann, Ralf
    NATURE METHODS, 2018, 15 (09) : 685 - +
  • [39] Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation
    Xu, Xiaolong
    Li, Chuanping
    Zhou, Ya
    Jin, Yongdong
    ACS SENSORS, 2017, 2 (10): : 1452 - 1457
  • [40] Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules
    Szalai, Alan M.
    Siarry, Bruno
    Lukin, Jeronimo
    Williamson, David J.
    Unsain, Nicolas
    Caceres, Alfredo
    Pilo-Pais, Mauricio
    Acuna, Guillermo
    Refojo, Damian
    Owen, Dylan M.
    Simoncelli, Sabrina
    Stefani, Fernando D.
    NATURE COMMUNICATIONS, 2021, 12 (01)