SMOOTHNESS OF THE DENSITY FOR SOLUTIONS TO GAUSSIAN ROUGH DIFFERENTIAL EQUATIONS

被引:49
作者
Cass, Thomas [1 ]
Hairer, Martin [2 ]
Litterer, Christian [1 ,3 ]
Tindel, Samy [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[4] Univ Lorraine, Inst Elie Cartan Nancy, F-54506 Vandoeuvre Les Nancy, France
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Rough path analysis; Gaussian processes; Malliavin calculus; FRACTIONAL BROWNIAN MOTIONS; HYPOELLIPTIC SDES DRIVEN; LOCAL-TIMES; HORMANDERS THEOREM; SMALL VALUES; ERGODICITY; CONTINUITY; SIGNALS; PATHS; LAWS;
D O I
10.1214/13-AOP896
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider stochastic differential equations of the form dY(t) = V(Y-t)dX(t) + V-0(Y-t)dt driven by a multi-dimensional Gaussian process. Under the assumption that the vector fields V-0 and V = (V-1,...,V-d) satisfy Hormander's bracket condition, we demonstrate that Y-t admits a smooth density for any t is an element of (0, T], provided the driving noise satisfies certain nondegeneracy assumptions. Our analysis relies on relies on an interplay of rough path theory, Malliavin calculus and the theory of Gaussian processes. Our result applies to a broad range of examples including fractional Brownian motion with Hurst parameter H > 1/4, the Ornstein-Uhlenbeck process and the Brownian bridge returning after time T.
引用
收藏
页码:188 / 239
页数:52
相关论文
共 38 条
[1]  
[Anonymous], 2007, Lecture Notes in Mathematics
[2]   A version of Hormander's theorem for the fractional Brownian motion [J].
Baudoin, Fabrice ;
Hairer, Martin .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 139 (3-4) :373-395
[3]   Upper bounds for the density of solutions to stochastic differential equations driven by fractional Brownian motions [J].
Baudoin, Fabrice ;
Ouyang, Cheng ;
Tindel, Samy .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (01) :111-135
[4]   Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions [J].
Baudoin, Fabrice ;
Ouyang, Cheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (04) :759-792
[5]   LOCAL NONDETERMINISM AND LOCAL TIMES OF GAUSSIAN PROCESSES [J].
BERMAN, SM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (01) :69-94
[6]  
Boyd S., 2004, CONVEX OPTIMIZATION, VMR2061575
[7]   INTEGRABILITY AND TAIL ESTIMATES FOR GAUSSIAN ROUGH DIFFERENTIAL EQUATIONS [J].
Cass, Thomas ;
Litterer, Christian ;
Lyons, Terry .
ANNALS OF PROBABILITY, 2013, 41 (04) :3026-3050
[8]  
Cass T, 2010, ANN MATH, V171, P2115
[9]   NON-DEGENERACY OF WIENER FUNCTIONALS ARISING FROM ROUGH DIFFERENTIAL EQUATIONS [J].
Cass, Thomas ;
Friz, Peter ;
Victoir, Nicolas .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (06) :3359-3371
[10]   Stochastic analysis, rough path analysis and fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (01) :108-140