SMOOTHNESS OF THE DENSITY FOR SOLUTIONS TO GAUSSIAN ROUGH DIFFERENTIAL EQUATIONS

被引:47
作者
Cass, Thomas [1 ]
Hairer, Martin [2 ]
Litterer, Christian [1 ,3 ]
Tindel, Samy [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[4] Univ Lorraine, Inst Elie Cartan Nancy, F-54506 Vandoeuvre Les Nancy, France
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Rough path analysis; Gaussian processes; Malliavin calculus; FRACTIONAL BROWNIAN MOTIONS; HYPOELLIPTIC SDES DRIVEN; LOCAL-TIMES; HORMANDERS THEOREM; SMALL VALUES; ERGODICITY; CONTINUITY; SIGNALS; PATHS; LAWS;
D O I
10.1214/13-AOP896
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider stochastic differential equations of the form dY(t) = V(Y-t)dX(t) + V-0(Y-t)dt driven by a multi-dimensional Gaussian process. Under the assumption that the vector fields V-0 and V = (V-1,...,V-d) satisfy Hormander's bracket condition, we demonstrate that Y-t admits a smooth density for any t is an element of (0, T], provided the driving noise satisfies certain nondegeneracy assumptions. Our analysis relies on relies on an interplay of rough path theory, Malliavin calculus and the theory of Gaussian processes. Our result applies to a broad range of examples including fractional Brownian motion with Hurst parameter H > 1/4, the Ornstein-Uhlenbeck process and the Brownian bridge returning after time T.
引用
收藏
页码:188 / 239
页数:52
相关论文
共 38 条