Gauge invariant perturbation theory via homotopy transfer

被引:5
作者
Chiaffrino, Christoph [1 ]
Hohm, Olaf [1 ]
Pinto, Allison F. [1 ]
机构
[1] Humboldt Univ, Inst Phys, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
关键词
Classical Theories of Gravity; Gauge Symmetry; FIELD-THEORY; ALGEBRAS;
D O I
10.1007/JHEP05(2021)236
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that the perturbative expansion of general gauge theories can be expressed in terms of gauge invariant variables to all orders in perturbations. In this we generalize techniques developed in gauge invariant cosmological perturbation theory, using Bardeen variables, by interpreting the passing over to gauge invariant fields as a homotopy transfer of the strongly homotopy Lie algebras encoding the gauge theory. This is illustrated for Yang-Mills theory, gravity on flat and cosmological backgrounds and for the massless sector of closed string theory. The perturbation lemma yields an algorithmic procedure to determine the higher corrections of the gauge invariant variables and the action in terms of these.
引用
收藏
页数:48
相关论文
共 46 条
[1]   Energy-momentum tensor for cosmological perturbations [J].
Abramo, LRW ;
Brandenberger, RH ;
Mukhanov, VF .
PHYSICAL REVIEW D, 1997, 56 (06) :3248-3257
[2]   The geometry of the master equation and topological quantum field theory [J].
Alexandrov, M ;
Schwarz, A ;
Zaboronsky, O ;
Kontsevich, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (07) :1405-1429
[3]  
Arvanitakis A.S., ARXIV200707942
[4]   GAUGE-INVARIANT COSMOLOGICAL PERTURBATIONS [J].
BARDEEN, JM .
PHYSICAL REVIEW D, 1980, 22 (08) :1882-1905
[5]   Parent field theory and unfolding in BRST first-quantized terms [J].
Barnich, G ;
Grigoriev, M ;
Semikhatov, A ;
Tipunin, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) :147-181
[6]  
Barnich G., 2005, ANN U CRAIOVA PHYS, V15, P1
[7]   QUANTIZATION OF GAUGE-THEORIES WITH LINEARLY DEPENDENT GENERATORS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICAL REVIEW D, 1983, 28 (10) :2567-2582
[8]   GAUGE ALGEBRA AND QUANTIZATION [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1981, 102 (01) :27-31
[9]  
Chang Z., ARXIV200911994
[10]  
Crainic M., math/0403266