Adaptive approximation of nonlinear operators

被引:48
作者
Amat, S [1 ]
Busquier, S [1 ]
Negra, M [1 ]
机构
[1] Ecole Generaliste Ingn, Lab Anal Topol & Probabilites, Marseille, France
关键词
multiresolution; compression; nonlinear operators; Taylor's approximation;
D O I
10.1081/NFA-200042628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multiresolution transform corresponding to interpolatory techniques is used for fast application of second order Taylor's approximations. In designing this algorithm we apply data compression to the linear and the bilinear forms that appear on the approximation. Analysis of the error is performed. Finally, some numerical results are presented.
引用
收藏
页码:397 / 405
页数:9
相关论文
共 9 条
[1]   Dynamics of a family of third-order iterative methods that do not require using second derivatives [J].
Amat, A ;
Busquier, S ;
Plaza, S .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (03) :735-746
[2]   Multiresolution standard form of a matrix [J].
Arandiga, F ;
Candela, VF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) :417-434
[3]   Nonlinear multiscale decompositions:: The approach of A.!Harten [J].
Aràndiga, F ;
Donat, R .
NUMERICAL ALGORITHMS, 2000, 23 (2-3) :175-216
[4]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[5]  
DELAURIES G, 1989, CONSTR APPROX, V5, P49
[6]  
DONOHO D, 1994, INTERPOLATING WAVELE
[7]   DISCRETE MULTIRESOLUTION ANALYSIS AND GENERALIZED WAVELETS [J].
HARTEN, A .
APPLIED NUMERICAL MATHEMATICS, 1993, 12 (1-3) :153-192
[8]   Untitled [J].
Hartley, MG .
INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 1996, 33 (01) :3-3
[9]   Interpolatory subdivision schemes and wavelets [J].
Micchelli, CA .
JOURNAL OF APPROXIMATION THEORY, 1996, 86 (01) :41-71