Biohydrogen production by dark fermentation

被引:43
|
作者
Khanna, Namita [1 ]
Das, Debabrata [1 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Kharagpur 721302, W Bengal, India
关键词
BIOLOGICAL HYDROGEN-PRODUCTION; H-2; PRODUCTION; WASTE-WATER; CLOSTRIDIUM-PARAPUTRIFICUM; SLUDGE; PH; BACTERIUM; REACTOR; CULTURE; GAS;
D O I
10.1002/wene.15
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen has emerged as a promising alternative because it can be derived from a renewable energy sources and used in fuel cells with high efficiency and thus appears as the most promising alternative to fossil fuels. Among the various biological processes known to produce biohydrogen, dark fermentation offers an excellent potential for practical application such as treatment of organic wastes. However, commercialization of the process depends on advances in bioprocess design and optimization along with an understanding of the structure of biohydrogen producing communities and their improvement. The present paper highlights the major factors affecting biohydrogen production as well as the importance of consortium development and molecular understanding of the microorganisms involved in the process toward the realization of a stable hydrogen economy. Further, technological advancements based on improved bioreactor designs and integrated systems based on process economy have been discussed. Based on the recent research on dark fermentative hydrogen production, several new findings and achievements in the field have been highlighted. (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:401 / 421
页数:21
相关论文
共 50 条
  • [21] Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach
    Srivastava, Neha
    Srivastava, Manish
    Malhotra, Bansi D.
    Gupta, Vijai K.
    Ramteke, P. W.
    Silva, Roberto N.
    Shukla, Pratyoosh
    Dubey, Kashyap Kumar
    Mishra, P. K.
    BIOTECHNOLOGY ADVANCES, 2019, 37 (06)
  • [22] Recent insights into biohydrogen production by microalgae - From biophotolysis to dark fermentation
    Nagarajan, Dillirani
    Lee, Duu-Jong
    Kondo, Akihiko
    Chang, Jo-Shu
    BIORESOURCE TECHNOLOGY, 2017, 227 : 373 - 387
  • [23] Biohydrogen production from carob waste of the Lebanese industry by dark fermentation
    Bahry, Hajar
    Abdallah, Rawa
    Chezeau, Benoit
    Pons, Agnes
    Taha, Samir
    Vial, Christophe
    BIOFUELS-UK, 2022, 13 (02): : 219 - 229
  • [24] Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review
    I. Ntaikou
    G. Antonopoulou
    G. Lyberatos
    Waste and Biomass Valorization, 2010, 1 : 21 - 39
  • [25] Hydroxyapatite Fabrication for Enhancing Biohydrogen Production from Glucose Dark Fermentation
    Mo, Haoe
    Wang, Na
    Ma, Zhongmin
    Zhang, Jishi
    Zhang, Jinlong
    Wang, Lu
    Dong, Weifang
    Zang, Lihua
    ACS OMEGA, 2022, 7 (12): : 10550 - 10558
  • [26] Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses
    Avcioglu, Sevler Gokce
    Ozgur, Ebru
    Eroglu, Inci
    Yucel, Meral
    Gunduz, Ufuk
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 11360 - 11368
  • [27] Biohydrogen Production from Sewage Sludge by Sequential Dark and Photo Fermentation
    Zhao, Yuxiao
    Liang, Xiaohui
    Mu, Hui
    Zhang, Xiaodong
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2015, 9 (01) : 95 - 100
  • [28] Biohydrogen Production by Dark Fermentation of Arundo donax for Feeding Fuel Cells
    Ausiello, Angelo
    Micoli, Luca
    Pirozzi, Domenico
    Toscano, Giuseppe
    Turco, Maria
    ICHEAP12: 12TH INTERNATIONAL CONFERENCE ON CHEMICAL & PROCESS ENGINEERING, 2015, 43 : 385 - 390
  • [29] Development of a method for biohydrogen production from wheat straw by dark fermentation
    Nasirian, Nima
    Almassi, Morteza
    Minaei, Saeid
    Widmann, Renatus
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) : 411 - 420
  • [30] Biohydrogen production from different biodegradable substrates through dark fermentation
    Maru, B. T.
    Medina, F.
    Sueiras, J. E.
    Stchigel Glikman, A. M.
    NEW BIOTECHNOLOGY, 2009, 25 : S216 - S217