Thermal conductivity characterization of three dimensional carbon nanotube network using freestanding sensor-based 3ω technique

被引:15
作者
Kong, Qinyu [1 ]
Qiu, Lin [2 ]
Lim, Yu Dian [1 ]
Tan, Chong Wei [1 ]
Liang, Kun [1 ]
Lu, Congxiang [1 ,3 ,4 ]
Tay, Beng Kang [1 ,5 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Ctr Micro Nanoelect NOVITAS, Singapore 639798, Singapore
[2] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China
[3] Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
[4] Joyson Holding Grp Co Ltd, Ningbo Hitech Pk, Ningbo 315000, Zhejiang, Peoples R China
[5] THALES, NTU, CNRS, CINTRA,UMI 3288, Res Techno Plaza,50 Nanyang Dr,Border 10 Block, Singapore 637553, Singapore
关键词
Thermal conductivity; Carbon nanotube network; 3 omega technique; Freestanding sensor; Finite element model; GROWTH;
D O I
10.1016/j.surfcoat.2018.03.090
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel three-dimensional (3D) carbon nanotube (CND network, composed of vertically aligned CNT array (primary CNT) bridged with randomly oriented secondary CNT, is synthesized in this work. We report the first data for the thermal properties of this new structure using freestanding sensor-based 3 omega technique. Introducing freestanding sensor to conventional 3 omega system enables the nondestructive characterization for samples with rough surfaces. The thermal conductivities of CNT films, as well as the contact resistance between the sensor and sample surfaces, are extracted numerically by a finite-element thermal model. The thermal conductivities of 3D CNT network under different array densities range from 9.3 to 19.8 W/mK. It is found that at lower CNT array density of 5.6 x 10(8)/cm(2), the growth of secondary CNT enhances the thermal conductivity of primary CNT array by 55.9%. This significant improvement in thermal conductivity can be attributed to the additional thermal pathway provided by the secondary CNTs in the primary CNT forest. However as the density of primary CNT array increases beyond 7.2 x 10(8)/cm(2), the growth of secondary CNTs on primary CNT forest reduces its thermal conductivity. This reduction in thermal conductivity can possibly be caused by the excessive thermal resistance from the CNT-CNT connection points within 3D CNT network.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 27 条
  • [1] Flip Chip Based on Carbon Nanotube-Carbon Nanotube Interconnected Bumps for High-Frequency Applications
    Brun, Christophe
    Yap, Chin Chong
    Tan, Dunlin
    Bila, Stephane
    Pacchini, Sebastien
    Baillargeat, Dominique
    Tay, Beng Kang
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2013, 12 (04) : 609 - 615
  • [2] Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition
    Chhowalla, M
    Teo, KBK
    Ducati, C
    Rupesinghe, NL
    Amaratunga, GAJ
    Ferrari, AC
    Roy, D
    Robertson, J
    Milne, WI
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) : 5308 - 5317
  • [3] Density control of carbon nanotubes using NH3 plasma treatment of Ni catalyst layer
    Choi, JH
    Tae, YL
    Choi, SH
    Han, JH
    Yoo, JB
    Park, CY
    Jung, T
    Yu, SG
    Yi, W
    Han, IT
    Kim, JM
    [J]. THIN SOLID FILMS, 2003, 435 (1-2) : 318 - 323
  • [4] A metallization and bonding approach for high performance carbon nanotube thermal interface materials
    Cross, Robert
    Cola, Baratunde A.
    Fisher, Timothy
    Xu, Xianfan
    Gall, Ken
    Graham, Samuel
    [J]. NANOTECHNOLOGY, 2010, 21 (44)
  • [5] Duong H. M., 2016, CARBON NANOTUBES CUR
  • [6] The 3ω-method for thermal conductivity measurements in a bottom heater geometry
    Feuchter, Manuel
    Jooss, Christian
    Kamlah, Marc
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (03): : 649 - 661
  • [7] Comparative study of textured diamond films by thermal conductivity measurements
    Govindaraju, N.
    Aleksov, A.
    Li, X.
    Okuzumi, F.
    Wolter, S. D.
    Collazo, R.
    Prater, J. T.
    Sitar, Z.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (03): : 331 - 335
  • [8] Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review
    Han, Zhidong
    Fina, Alberto
    [J]. PROGRESS IN POLYMER SCIENCE, 2011, 36 (07) : 914 - 944
  • [9] Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth
    Hofmann, S
    Cantoro, M
    Kleinsorge, B
    Casiraghi, C
    Parvez, A
    Robertson, J
    Ducati, C
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 98 (03)
  • [10] 3-omega measurements of vertically oriented carbon nanotubes on silicon
    Hu, X. Jack
    Padilla, Antonio A.
    Xu, Jun
    Fisher, Timothy S.
    Goodson, Kenneth E.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (11): : 1109 - 1113