Sequential Estimation of State of Charge and Equivalent Circuit Parameters for Lithium-Ion Batteries

被引:0
|
作者
Wada, Toshihiro [1 ]
Takegami, Tomoki [1 ]
Wang, Yebin [2 ]
机构
[1] Mitsubishi Electr Corp, Adv Technol R&D Ctr, 8-1-1 Tsukaguchi Honmachi, Amagasaki, Hyogo 811, Japan
[2] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
来源
2015 AMERICAN CONTROL CONFERENCE (ACC) | 2015年
关键词
RECURSIVE LEAST-SQUARES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a method to estimate the state of charge (SoC) and the equivalent circuit parameters for lithium-ion batteries. Model-based approaches for SoC estimation, such as Kalman filter, achieve better accuracy than Coulomb counting or open circuit voltage method, albeit requiring accurate model parameters of the battery. We analyze bias errors in the Kalman filter-based SoC estimation induced by errors of the battery model parameters, and develop a simultaneous recursive least squares filter to produce unbiased estimation of the battery parameters.
引用
收藏
页码:2494 / 2498
页数:5
相关论文
共 22 条
  • [21] Lithium-ion Battery SOC Estimation Based on Weighted Adaptive Recursive Extended Kalman Filter Joint Algorithm
    Wang, Jianfeng
    Zhang, Zhaozhen
    2020 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2020, : 11 - 15
  • [22] State of Charge Estimation of Lithium Battery Utilizing Strong Tracking H-Infinity Filtering Algorithm
    Yuan, Tianqing
    Liu, Yang
    Bai, Jing
    Sun, Hao
    BATTERIES-BASEL, 2024, 10 (11):