GLOBAL EXISTENCE FOR THE EULER-MAXWELL SYSTEM

被引:0
作者
Germain, Pierre [1 ]
Masmoudi, Nader [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2014年 / 47卷 / 03期
基金
美国国家科学基金会;
关键词
NONLINEAR KLEIN-GORDON; WATER-WAVES EQUATION; BOLTZMANN-EQUATION; POISSON SYSTEM; DIMENSION; SINGULARITIES; DERIVATION; FLOWS; LIMIT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Euler-Maxwell system describes the evolution of a plasma when the collisions are important enough that each species is in a hydrodynamic equilibrium. In this paper we prove global existence of small solutions to this system set in the whole three-dimensional space, by combining the space-time resonance method (to obtain decay) and energy estimates (to control high frequencies). The non-integrable decay of the solutions makes it necessary to examine resonances within the energy estimate argument.
引用
收藏
页码:469 / 503
页数:35
相关论文
共 35 条
[1]  
[Anonymous], 2003, PHYS PLASMAS
[2]  
[Anonymous], 1986, Japan J. Appl. Math, DOI DOI 10.1007/BF03167100
[3]  
[Anonymous], 2007, EMS MONOGRAPHS MATH
[4]  
[Anonymous], 1990, Jpn. J. Appl. Math, DOI DOI 10.1007/BF03167897
[5]  
Bellan P., 2006, Fundamentals of plasmas physics
[6]   A model hierarchy for ionospheric plasma modeling [J].
Besse, C ;
Degond, P ;
Deluzet, F .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (03) :393-415
[7]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[8]   Compressible Euler-Maxwell equations [J].
Chen, GQ ;
Jerome, JW ;
Wang, DH .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :311-331
[9]  
COIFMAN R. R., 1978, ASTERISQUE, V57
[10]  
Dendy R, 1990, Plasma dynamics