Evaluation of Keypoint Descriptors for Gender Recognition

被引:0
作者
Soledad Iglesias, Florencia [1 ]
Elena Buemi, Maria [1 ]
Acevedo, Daniel [1 ]
Jacobo-Berlles, Julio [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Comp, RA-1053 Buenos Aires, DF, Argentina
来源
PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014 | 2014年 / 8827卷
关键词
Gender recognition; LBP; Keypoint Descriptors;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gender recognition is a relevant problem due to the number and importance of its possible application areas. The challenge is to achieve high recognition rates in the shortest possible time. Most studies are based on Local Binary Patterns (LBP) and its variants to estimate gender. In this paper, we propose the use of Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and Rotated BRIEF (ORB) and Binary Robust Invariant Scalable Keypoints (BRISK) in gender recognition due to their good performance and speed. The aim is to show that ORB and BRISK are faster than LBP but allow to achieve similar recognition rates, which makes them suitable for real-time systems. For the best of our knowledge, it has not been studied in literature.
引用
收藏
页码:564 / 571
页数:8
相关论文
共 20 条
  • [1] Ahonen T., 2009, SCAND C IM AN SCIA
  • [2] Face description with local binary patterns:: Application to face recognition
    Ahonen, Timo
    Hadid, Abdenour
    Pietikainen, Matti
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) : 2037 - 2041
  • [3] Face gender classification: A statistical study when neutral and distorted faces are combined for training and testing purposes
    Andreu, Yasmina
    Garcia-Sevilla, Pedro
    Mollineda, Ramon A.
    [J]. IMAGE AND VISION COMPUTING, 2014, 32 (01) : 27 - 36
  • [4] SURF: Speeded up robust features
    Bay, Herbert
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 404 - 417
  • [5] Revisiting Linear Discriminant Techniques in Gender Recognition
    Bekios-Calfa, Juan
    Buenaposada, Jose M.
    Baumela, Luis
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (04) : 858 - 864
  • [6] BRIEF: Binary Robust Independent Elementary Features
    Calonder, Michael
    Lepetit, Vincent
    Strecha, Christoph
    Fua, Pascal
    [J]. COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 : 778 - 792
  • [7] Jian-Gang Wang, 2010, 2010 5th IEEE Conference on Industrial Electronics and Applications (ICIEA 2010), P376, DOI 10.1109/ICIEA.2010.5516892
  • [8] Leutenegger S, 2011, IEEE I CONF COMP VIS, P2548, DOI 10.1109/ICCV.2011.6126542
  • [9] Li M, 2013, IEEE IMAGE PROC, P2753, DOI 10.1109/ICIP.2013.6738567
  • [10] Lowe D. G., 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision, P1150, DOI 10.1109/ICCV.1999.790410