Multi-beam single-photon-counting three-dimensional imaging lidar

被引:96
作者
Li, Zhaohui [1 ]
Wu, E. [1 ]
Pang, Chengkai [1 ]
Du, Bingcheng [1 ]
Tao, Yuliang [2 ]
Peng, Huan [2 ]
Zeng, Heping [1 ]
Wu, Guang [1 ,3 ]
机构
[1] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] Beijing Inst Space Mech & Elect, Beijing 10009, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
1550; NM; LASER ALTIMETER; KILOMETER-RANGE; DEPTH; DETECTOR; TOPOGRAPHY;
D O I
10.1364/OE.25.010189
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photon-counting laser ranging has attracted a lot of research interest for its application in the altimeter. In this letter, we report a large scale multi-beam photon-counting laser imaging system by using 100 laser beams in linear array as the light source. Taking advantage of a 100-channel low-noise high-efficiency single-photon detector, the three-dimensional image of remote targets could be constructed rapidly according to the time-offlight measurement. This system provides a solution for a high-speed, high-resolution, low energy-consumption pushbroom airborne or spaceborne laser altimeter. (C) 2017 Optical Society of America
引用
收藏
页码:10189 / 10195
页数:7
相关论文
共 23 条
[1]   Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry [J].
Araki, H. ;
Tazawa, S. ;
Noda, H. ;
Ishihara, Y. ;
Goossens, S. ;
Sasaki, S. ;
Kawano, N. ;
Kamiya, I. ;
Otake, H. ;
Oberst, J. ;
Shum, C. .
SCIENCE, 2009, 323 (5916) :897-900
[2]   Laser ranging at few-photon level by photon-number-resolving detection [J].
Bao, Zeyu ;
Liang, Yan ;
Wang, Zhiyuan ;
Li, Zhaohui ;
Wu, E. ;
Wu, Guang ;
Zeng, Heping .
APPLIED OPTICS, 2014, 53 (18) :3908-3912
[3]  
Becker W., 2005, ADV TIME CORRELATED
[4]   Single-photon pulsed-light indirect time-of-flight 3D ranging [J].
Bellisai, S. ;
Bronzi, D. ;
Villa, F. A. ;
Tisa, S. ;
Tosi, A. ;
Zappa, F. .
OPTICS EXPRESS, 2013, 21 (04) :5086-5098
[5]   Lidar measurement of snow depth: a review [J].
Deems, Jeffrey S. ;
Painter, Thomas H. ;
Finnegan, David C. .
JOURNAL OF GLACIOLOGY, 2013, 59 (215) :467-479
[6]   Geodetic imaging with airborne LiDAR: the Earth's surface revealed [J].
Glennie, C. L. ;
Carter, W. E. ;
Shrestha, R. L. ;
Dietrich, W. E. .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (08)
[7]  
Harding D., 2010, NASA EARTH SCI TECHN, V10, P253
[8]   1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity [J].
Liang, Yan ;
Huang, Jianhua ;
Ren, Min ;
Feng, Baicheng ;
Chen, Xiuliang ;
Wu, E. ;
Wu, Guang ;
Zeng, Heping .
OPTICS EXPRESS, 2014, 22 (04) :4662-4670
[9]   Underwater depth imaging using time-correlated single-photon counting [J].
Maccarone, Aurora ;
McCarthy, Aongus ;
Ren, Ximing ;
Warburton, Ryan E. ;
Wallace, Andy M. ;
Moffat, James ;
Petillot, Yvan ;
Buller, Gerald S. .
OPTICS EXPRESS, 2015, 23 (26) :33911-33926
[10]   Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector [J].
McCarthy, Aongus ;
Ren, Ximing ;
Della Frera, Adriano ;
Gemmell, Nathan R. ;
Krichel, Nils J. ;
Scarcella, Carmelo ;
Ruggeri, Alessandro ;
Tosi, Alberto ;
Buller, Gerald S. .
OPTICS EXPRESS, 2013, 21 (19) :22098-22113