Data-driven real-time advanced geological prediction in tunnel construction using a hybrid deep learning approach

被引:25
作者
Fu, Xianlei [1 ]
Wu, Maozhi [2 ]
Tiong, Robert Lee Kong [1 ]
Zhang, Limao [3 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Hubei Jianke Technol Grp, Wuhan 430223, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Natl Ctr Technol Innovat Digital Construct, Wuhan, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; GCN; Advanced geological prediction; LSTM; Tunnel construction;
D O I
10.1016/j.autcon.2022.104672
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the prediction of geological conditions ahead of tunnel boring machines (TBM) using a hybrid deep learning approach. By integrating graph convolutional network (GCN) and long short-term memory (LSTM) networks, the spatial and temporal features from TBM parameters and geological information are extracted for accurate prediction. The results from the case study indicate that (1) The proposed approach provides estimation with a high accuracy of 0.9986; (2) The past geological information has a significant contribution to the model; (3) The proposed approach outperforms several state-of-the-art methods including support vector machine (SVM), extreme gradient boosting (XGBoost) and LSTM method. The proposed hybrid deep learning approach can be a useful tool that provides reliable estimation of the advanced geological conditions in real-time.
引用
收藏
页数:15
相关论文
共 41 条
[1]  
Ba-Trung Cao, 2021, Challenges and Innovations in Geomechanics. Proceedings of the 16th International Conference of IACMAG. Lecture Notes in Civil Engineering (LNCE 125), P323, DOI 10.1007/978-3-030-64514-4_28
[2]   Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization [J].
Bo, Yin ;
Liu, Quansheng ;
Huang, Xing ;
Pan, Yucong .
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2022, 124
[3]  
Cetinkaya H, 2014, PROC EUR CONF ANTENN, P2804, DOI 10.1109/EuCAP.2014.6902409
[4]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[5]   The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation [J].
Chicco, Davide ;
Jurman, Giuseppe .
BMC GENOMICS, 2020, 21 (01)
[6]   Towards the integration of smart techniques for tunnel seismic applications [J].
Dickmann T. ;
Hecht-Méndez J. ;
Krüger D. ;
Sapronova A. ;
Unterlaß P.J. ;
Marcher T. .
Geomechanik und Tunnelbau, 2021, 14 (05) :609-615
[7]   Data-driven estimation of TBM performance in soft soils using density-based spatial clustering and random forest [J].
Fu, Xianlei ;
Feng, Liuyang ;
Zhang, Limao .
APPLIED SOFT COMPUTING, 2022, 120
[8]   Spatio-temporal feature fusion for real-time prediction of TBM operating parameters: A deep learning approach [J].
Fu, Xianlei ;
Zhang, Limao .
AUTOMATION IN CONSTRUCTION, 2021, 132
[9]   Recurrent neural networks for real-time prediction of TBM operating parameters [J].
Gao, Xianjie ;
Shi, Maolin ;
Song, Xueguan ;
Zhang, Chao ;
Zhang, Hongwei .
AUTOMATION IN CONSTRUCTION, 2019, 98 :225-235
[10]   Decision support system for an intelligent operator of utility tunnel boring machines [J].
Garcia, Gabriel Rodriguez ;
Michau, Gabriel ;
Einstein, Herbert H. ;
Fink, Olga .
AUTOMATION IN CONSTRUCTION, 2021, 131 (131)