Maximization of ICRF power by SOL density tailoring with local gas injection

被引:38
作者
Jacquet, P. [1 ]
Goniche, M. [2 ]
Bobkov, V. [3 ]
Lerche, E. [1 ,4 ]
Pinsker, R. I. [5 ]
Pitts, A. [6 ]
Zhang, W. [3 ,7 ]
Colas, L. [2 ]
Hosea, J. [8 ]
Moriyama, S. [9 ]
Wang, S-J. [10 ]
Wukitch, S. [11 ]
Zhang, X. [12 ]
Bilato, R. [3 ]
Bufferand, H. [2 ]
Guimarais, L. [13 ]
Faugel, H. [3 ]
Hanson, G. R. [14 ]
Kocan, M. [6 ]
Monakhov, I. [1 ]
Noterdaeme, J-M. [3 ,7 ]
Petrzilka, V. [15 ]
Shaw, A. [1 ]
Stepanov, I. [3 ,7 ]
Sips, A. C. C. [16 ]
Van Eester, D. [4 ]
Wauters, T. [4 ]
机构
[1] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] CEA, IRFM, F-13108 St Paul Les Durance, France
[3] EURATOM, Max Planck Inst Plasmaphys, D-14476 Garching, Germany
[4] EUROfus Consortium Member Trilateral Euregio Clus, LPP ERM KMS, Brussels, Belgium
[5] Gen Atom Co, POB 85608, San Diego, CA 92186 USA
[6] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[7] UGent, Dept Appl Phys, Ghent, Belgium
[8] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[9] Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3110193, Japan
[10] Natl Fus Res Inst, Yuseong 305806, Daejeon, South Korea
[11] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[12] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[13] Univ Lisbon, IST, Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal
[14] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[15] IPP CR, Na Slovankou 3, Prague 18221 8, Czech Republic
[16] Commiss European Communities, B-1049 Brussels, Belgium
关键词
ICRF power; antenna loading; gas injection; SOL density; WALL CONDITIONING TECHNIQUE; ANTENNA PERFORMANCE; ASDEX UPGRADE; EDGE DENSITY; TORE-SUPRA; PLASMA;
D O I
10.1088/0029-5515/56/4/046001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experiments have been performed under the coordination of the International Tokamak Physics Activity (ITPA) on several tokamaks, including ASDEX Upgrade (AUG), JET and DIII-D, to characterize the increased Ion cyclotron range of frequency (ICRF) antenna loading achieved by optimizing the position of gas injection relative to the RF antennas. On DIII-D, AUG and JET (with the ITER-Like Wall) a 50% increase in the antenna loading was observed when injecting deuterium in ELMy H-mode plasmas using mid-plane inlets close to the powered antennas instead of divertor injection and, with smaller improvement when using gas inlets located at the top of the machine. The gas injection rate required for such improvements (similar to 0.7 x 10(22) el s(-1) in AUG, similar to 1.0 x 10(22) el s(-1) in JET) is compatible with the use of this technique to optimize ICRF heating during the development of plasma scenarios and no degradation of confinement was observed when using the mid-plane or top inlets compared with divertor valves. An increase in the scrape-off layer (SOL) density was measured when switching gas injection from divertor to outer mid-plane or top. On JET and DIII-D, the measured SOL density increase when using main chamber puffing is consistent with the antenna coupling resistance increase provided that the distance between the measurement lines of sight and the injection location is taken into account. Optimized gas injection was also found to be beneficial for reducing tungsten (W) sputtering at the AUG antenna limiters, and also to reduce slightly the W and nickel (Ni) content in JET plasmas. Modeling the specific effects of divertor/top/mid-plane injection on the outer mid-plane density was carried out using both the EDGE2D-EIRENE and EMC3-EIRENE plasma boundary code packages; simulations indeed indicate that outer mid-plane gas injection maximizes the density in the mid-plane close to the injection point with qualitative agreement with the AUG SOL density measurements for EMC3-EIRENE. Field line tracing for ITER in the 15 MA Q(DT) = 10 reference scenario indicates that the planned gas injection system could be used to tailor the density in front the antennas. Benchmarking of EMC3-EIRENE against AUG and JET data is planned as a first step towards the ITER SOL modelling required to quantify the effect of gas injection on the SOL density in front of the antennas.
引用
收藏
页数:14
相关论文
共 51 条
[1]   Edge plasma density convection during ion cyclotron resonance heating on Tore Supra [J].
Bécoulet, M ;
Colas, L ;
Pécoul, S ;
Gunn, J ;
Ghendrih, P ;
Bécoulet, A ;
Heuraux, S .
PHYSICS OF PLASMAS, 2002, 9 (06) :2619-2632
[2]   Global and pedestal confinement in JET with a Be/W metallic wall [J].
Beurskens, M. N. A. ;
Frassinetti, L. ;
Challis, C. ;
Giroud, C. ;
Saarelma, S. ;
Alper, B. ;
Angioni, C. ;
Bilkova, P. ;
Bourdelle, C. ;
Brezinsek, S. ;
Buratti, P. ;
Calabro, G. ;
Eich, T. ;
Flanagan, J. ;
Giovannozzi, E. ;
Groth, M. ;
Hobirk, J. ;
Joffrin, E. ;
Leyland, M. J. ;
Lomas, P. ;
de la Luna, E. ;
Kempenaars, M. ;
Maddison, G. ;
Maggi, C. ;
Mantica, P. ;
Maslov, M. ;
Matthews, G. ;
Mayoral, M-L ;
Neu, R. ;
Nunes, I. ;
Osborne, T. ;
Rimini, F. ;
Scannell, R. ;
Solano, E. R. ;
Snyder, P. B. ;
Voitsekhovitch, I. ;
de Vries, Peter .
NUCLEAR FUSION, 2014, 54 (04)
[3]   Influence of an evanescence layer in front of the antenna on the coupling efficiency of ion cyclotron waves [J].
Bilato, R ;
Brambilla, M ;
Hartmann, DA ;
Parisot, A .
NUCLEAR FUSION, 2005, 45 (02) :L5-L7
[4]   Influence of Gas Injection Location and Magnetic Perturbations on ICRF Antenna Performance in ASDEX Upgrade [J].
Bobkov, V. ;
Stepanov, I. ;
Jacquet, P. ;
Monakhov, I. ;
Bilato, R. ;
Colas, L. ;
Czarnecka, A. ;
Dux, R. ;
Faugel, H. ;
Kallenbach, A. ;
Mueller, H. W. ;
Noterdaeme, J. -M. ;
Potzel, S. ;
Puetterich, Th. ;
Suttrop, W. .
RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 :271-274
[5]   ICRF operation with improved antennas in ASDEX Upgrade with W wall [J].
Bobkov, V. ;
Balden, M. ;
Bilato, R. ;
Braun, F. ;
Dux, R. ;
Herrmann, A. ;
Faugel, H. ;
Fuenfgelder, H. ;
Giannone, L. ;
Kallenbach, A. ;
Maier, H. ;
Mueller, H. W. ;
Neu, R. ;
Noterdaeme, J-M ;
Puetterich, Th ;
Rohde, V. ;
Tsujii, N. ;
Zeus, F. ;
Zohm, H. .
NUCLEAR FUSION, 2013, 53 (09)
[6]   ICRF antenna coupling dependence on edge plasma conditions in ASDEX Upgrade [J].
Bobkov, V. V. ;
Bilato, R. ;
Braun, F. ;
Dux, R. ;
Noterdaeme, J. -M. .
NUCLEAR FUSION, 2006, 46 (07) :S469-S475
[7]   Progress in Controlling ICRF-edge Interactions in ASDEX Upgrade [J].
Bobkov, Vl. ;
Jacquet, Ph. ;
Ochoukov, R. ;
Zhang, W. ;
Bilato, R. ;
Braun, F. ;
Carralero, D. ;
Colas, L. ;
Czarnecka, A. ;
Dux, R. ;
Faugel, H. ;
Funfgelder, H. ;
Jacquot, J. ;
Krivska, A. ;
Lunt, T. ;
Milanesio, D. ;
Maggiora, R. ;
Meyer, O. ;
Monakhov, I. ;
Noterdaeme, J. -M. ;
Potzel, S. ;
Putterich, Th. ;
Stepanov, I. .
RADIOFREQUENCY POWER IN PLASMAS, 2015, 1689
[8]   Assessment of compatibility of ICRF antenna operation with full W wall in ASDEX Upgrade [J].
Bobkov, Vl V. ;
Braun, F. ;
Dux, R. ;
Herrmann, A. ;
Giannone, L. ;
Kallenbach, A. ;
Krivska, A. ;
Mueller, H. W. ;
Neu, R. ;
Noterdaeme, J. -M. ;
Puetterich, T. ;
Rohde, V. ;
Schweinzer, J. ;
Sips, A. ;
Zammuto, I. .
NUCLEAR FUSION, 2010, 50 (03)
[9]   EVALUATION OF THE SURFACE ADMITTANCE MATRIX OF A PLASMA IN THE FINITE LARMOR RADIUS APPROXIMATION [J].
BRAMBILLA, M .
NUCLEAR FUSION, 1995, 35 (10) :1265-1280
[10]   ICRF coupling and edge density profile on Tore Supra [J].
Clairet, F ;
Colas, L ;
Heuraux, S ;
Lombard, G .
PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 (10) :1567-1580