Generative adversarial networks with denoising penalty and sample augmentation

被引:2
|
作者
Gan, Yan [1 ]
Liu, Kedi [1 ]
Ye, Mao [1 ]
Zhang, Yuxiao [1 ]
Qian, Yang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 14期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Denoising penalty; Sample augmentation; Robustness; Discriminating ability;
D O I
10.1007/s00521-019-04526-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the original generative adversarial networks (GANs) model, there are three problems that (1) the generator is not robust to the input random noise; (2) the discriminating ability of discriminator gradually reduces in the later stage of training; and (3) it is difficult to reach at the theoretical Nash equilibrium point in the process of training. To solve the above problems, in this paper, a GANs model with denoising penalty and sample augmentation is proposed. In this model, a denoising constraint is firstly designed as the penalty term of the generator, which minimizes the F-norm between the input noise and the encoding of the image generated by the corresponding perturbed noise, respectively. The generator is forced to learn more robust invariant characteristics. Secondly, we put forward a sample augmentation discriminator to improve the ability of discriminator, which is trained by mixing the generated and real images as training samples. Thirdly, in order to achieve the theoretical optimization as far as possible, our model combines denoising penalty and sample augmentation discriminator. Then, denoising penalty and sample augmentation discriminator are applied to five different GANs models whose loss functions include the original GANs, Hinge and least squares loss. Finally, experimental results on the LSUN and CelebA datasets show that our proposed method can help the baseline models improve the quality of generated images.
引用
收藏
页码:9995 / 10005
页数:11
相关论文
共 50 条
  • [1] Generative adversarial networks with denoising penalty and sample augmentation
    Yan Gan
    Kedi Liu
    Mao Ye
    Yuxiao Zhang
    Yang Qian
    Neural Computing and Applications, 2020, 32 : 9995 - 10005
  • [2] Generative adversarial networks with augmentation and penalty
    Gan, Yan
    Liu, Kedi
    Ye, Mao
    Qian, Yang
    NEUROCOMPUTING, 2019, 360 : 52 - 60
  • [3] Generative Adversarial Networks with Data Augmentation and Multiple Penalty Areas for Image Synthesis
    Chen, Li
    Chan, Huah Yong
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (03) : 428 - 434
  • [4] Conditional Generative Adversarial Networks with Adversarial Attack and Defense for Generative Data Augmentation
    Baek, Francis
    Kim, Daeho
    Park, Somin
    Kim, Hyoungkwan
    Lee, SangHyun
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2022, 36 (03)
  • [5] Generative Adversarial Networks for Bitcoin Data Augmentation
    Zola, Francesco
    Lukas Bruse, Jan
    Etxeberria Barrio, Xabier
    Galar, Mikel
    Orduna Urrutia, Raul
    2020 2ND CONFERENCE ON BLOCKCHAIN RESEARCH & APPLICATIONS FOR INNOVATIVE NETWORKS AND SERVICES (BRAINS), 2020, : 136 - 143
  • [6] Data Augmentation with Improved Generative Adversarial Networks
    Shi, Hongjiang
    Wang, Lu
    Ding, Guangtai
    Yang, Fenglei
    Li, Xiaoqiang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 73 - 78
  • [7] Data Augmentation Powered by Generative Adversarial Networks
    Poka, Karoly Bence
    Szemenyei, Marton
    2020 23RD IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2020,
  • [8] Optimized Generative Adversarial Networks for Adversarial Sample Generation
    Alghazzawi, Daniyal M.
    Hasan, Syed Hamid
    Bhatia, Surbhi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 3877 - 3897
  • [9] CNN HYPERSPECTRAL IMAGE CLASSIFICATION USING TRAINING SAMPLE AUGMENTATION WITH GENERATIVE ADVERSARIAL NETWORKS
    Neagoe, Victor-Emil
    Diaconescu, Paul
    2020 13TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2020, : 515 - 519
  • [10] Deep Generative Adversarial Networks for the Sparse Signal Denoising
    Wu, Kailun
    Zhang, Changshui
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1127 - 1132