Local random vector model for semiclassical fractal structure of chaotic resonance states

被引:5
作者
Clauss, Konstantin [1 ,2 ,3 ]
Ketzmerick, Roland [1 ,2 ]
机构
[1] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Ctr Dynam, D-01062 Dresden, Germany
[3] Tech Univ Munich, Dept Math, Boltzmannstr 3, D-85748 Garching, Germany
关键词
quantum chaos; semiclassical limit; resonance states; random vector model; local randomization; STATISTICAL PROPERTIES; QUANTUM ERGODICITY; WAVE CHAOS; WEYL LAW; EIGENFUNCTIONS; SCATTERING; SYSTEMS; MATRIX; MAPS; QUANTIZATION;
D O I
10.1088/1751-8121/ac62b9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The semiclassical structure of resonance states of classically chaotic scattering systems with partial escape is investigated. We introduce a local randomization on phase space for the baker map with escape, which separates the smallest multifractal scale from the scale of the Planck cell. This allows for deriving a semiclassical description of resonance states based on a local random vector model and conditional invariance. We numerically demonstrate that the resulting classical measures perfectly describe resonance states of all decay rates gamma for the randomized baker map. By decreasing the scale of randomization these results are compared to the deterministic baker map with partial escape. This gives the best available description of its resonance states. Quantitative differences indicate that a semiclassical description for deterministic chaotic systems must take into account that the multifractal structures persist down to the Planck scale.
引用
收藏
页数:24
相关论文
共 84 条
[1]   S-matrix, resonances, and wave functions for transport through billiards with leads [J].
Albeverio, S ;
Haake, F ;
Kurasov, P ;
Kus, M ;
Seba, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (10) :4888-4903
[2]   Chaotic explosions [J].
Altmann, Eduardo G. ;
Portela, Jefferson S. E. ;
Tel, Tamas .
EPL, 2015, 109 (03)
[3]   Chaotic Systems with Absorption [J].
Altmann, Eduardo G. ;
Portela, Jefferson S. E. ;
Tel, Tamas .
PHYSICAL REVIEW LETTERS, 2013, 111 (14)
[4]   Leaking chaotic systems [J].
Altmann, Eduardo G. ;
Portela, Jefferson S. E. ;
Tel, Tamas .
REVIEWS OF MODERN PHYSICS, 2013, 85 (02) :869-918
[5]  
Arnold V. I. A. A., 1968, Ergodic problems of classical mechanics. New York
[6]   EXACT THEORY FOR THE QUANTUM EIGENSTATES OF A STRONGLY CHAOTIC SYSTEM [J].
AURICH, R ;
STEINER, F .
PHYSICA D, 1991, 48 (2-3) :445-470
[7]  
Bäcker A, 2003, LECT NOTES PHYS, V618, P91
[8]  
Bäcker A, 2002, J PHYS A-MATH GEN, V35, P527, DOI 10.1088/0305-4470/35/3/306
[9]   Rate of quantum ergodicity in Euclidean billiards (vol 57, pg 5425, 1998) [J].
Backer, A ;
Schubert, R ;
Stifter, P .
PHYSICAL REVIEW E, 1998, 58 (04) :5192-5192
[10]   Rate of quantum ergodicity in Euclidean billiards [J].
Backer, A ;
Schubert, R ;
Stifter, P .
PHYSICAL REVIEW E, 1998, 57 (05) :5425-5447